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We consider the compressible Kraichnan model of turbulent advection with
small molecular diffusivity and velocity field regularized at short scales to mimic
the effects of viscosity. As noted in ref. 5, removing those two regularizations
in two opposite orders for intermediate values of compressibility gives Lagrang-
ian flows with quite different properties. Removing the viscous regularization
before diffusivity leads to the explosive separation of trajectories of fluid par-
ticles whereas turning the regularizations off in the opposite order results in
coalescence of Lagrangian trajectories. In the present paper we re-examine the
situation first addressed in ref. 6 in which the Prandtl number is varied when
the regularizations are removed. We show that an appropriate fine-tuning leads
to a sticky behavior of trajectories which hit each other on and off spending
a positive amount of time together. We examine the effect of such a trajectory
behavior on the passive transport showing that it induces anomalous scaling of
the stationary 2-point structure function of an advected tracer and influences
the rate of condensation of tracer energy in the zero wavenumber mode.
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1. INTRODUCTION

Certain qualitative features of transport of scalar or vector quantities by
turbulent flows may be understood by ignoring the back-reaction of the
transported quantity on the velocity dynamics (passive advection). In such
situations the transport properties reflect closely the properties of the fluid
trajectories, i.e. of the Lagrangian flow. The effects of molecular diffusion
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may be also taken into account by simply perturbing the fluid trajectories
by a Brownian noise. In fully developed turbulence the Lagrangian flow
exhibits different regimes. In particular, the pair dispersion (the distance
between two trajectories) will grow like square root of time when domi-
nated by the molecular noise, like exponential of time times the Lyapu-
nov exponent at short distances below the Kolmogorov viscous scale if the
diffusive effects may be neglected and superdiffusively (like square root of
time cubed in the celebrated Richardson law(21)) in the inertial interval
of scales. Even if not clearly separated, these regimes influence advection
in a different way and the transport properties become their cumulative
effect. In particular, in the presence of compressibility the (top) Lyapunov
exponent in the viscous interval might become negative so that diffusivity
and viscosity would have opposite effect on the Lagrangian dispersion.

In this paper we shall examine such a situation in the Kraichnan
model of turbulent flow(15) where the realistic velocity ensemble is replaced
by a Gaussian one with temporal decorrelation. Although grossly over-
simplified, the model admits different regimes and, due to its simplicity,
analytic calculations. It has become a popular test-ground for the turbu-
lence theory.(7) In ref.,(6) E and Vanden-Eijnden have argued that in the
Kraichnan model with intermediate amount of compressibility it is possi-
ble to fine tune the divergence of the Prandtl number Pr = ν

κ
when diffu-

sivity κ and viscosity ν are sent to zero in such a way that the mean time
that two noisy Lagrangian trajectories starting from the same point spend
within the (shrinking) viscous scale has a finite limit. The fine tuning of
Pr is designed to balance the diffusive spread of the pair on the short-
est scales by the compression in the viscous interval. Although the effect
was clearly identified in,(6) the required behavior of the Prandtl number
was incorrectly characterized there. In the present paper, we re-examine a
similar limit both from the point of view of the stochastic diffusion pro-
cess describing the particle dispersion and of its generator. We show that
under the properly identified fine tuning procedure for Pr , one obtains
when κ and ν tend to zero the so called sticky diffusion process for pair
dispersion. The generator of the sticky diffusion corresponds to a bound-
ary condition that involves two derivatives at zero dispersion. We examine
the consequences of such a limiting behavior for the transport properties
of passively advected tracer. A more detailed discussion of the content and
the results of the paper is deferred to Subsection 2.6.

2. LAGRANGIAN FLOW IN KRAICHNAN VELOCITIES

The transport in a synthetic Gaussian ensemble of time-decorre-
lated velocities was first considered by Kraichnan(15) and Kazantzev(14)
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for passively advected tracer and magnetic field, respectively. In the last
decade, the model has led to a new understanding of the statistical inter-
mittency of advected quantities and of the interplay between fluid com-
pressibility and transport properties, see ref. 7 and references therein. As
already mentioned, the passive advection by a d-dimensional velocity field
�v(t, �r) is intimately related to the behavior of the Lagrangian trajectories
(i.e. trajectories of fluid particles) perturbed by noise. Such trajectories sat-
isfy the stochastic ordinary differential equation

d
dt

�R(t)= �v(t, �R(t))+
√

2κ �η(t), (1)

where �η(t) is a d-dimensional white noise independent of velocity (and
of noises of other particles) and κ > 0 is the (molecular) diffusivity. The
advection of a passive tracer θ(t, �r) is governed by the advection-diffusion
equation

∂t θ + �v · �∇θ −κ �∇2θ =f , (2)

where f (t, �r) is a source or forcing term. In the absence of forcing (i.e. for
f =0) the passive tracer is carried along the particle trajectories so that

θ(t, �r)= θ(0, �R(0; t, �r)) . (3)

Here �R(t ′; t, �r) denotes a particle trajectory that passes through point �r
at time t and the overline stands for the average with respect to the
noise �η(t). Note that the forward tracer evolution is described by Lagrang-
ian trajectories going backwards in time. Similarly, in the presence of the
source, the tracer evolves according to the equation

θ(t, �r)= θ(0, �R(0; t, �r))+
∫ t

0
f (s, �R(s; t, �r))ds . (4)

This way, in random velocities, the statistics of advected quantities like θ is
linked to the statistical properties of (noisy) trajectories. The present arti-
cle exploits this relation in yet another situation in the Kraichnan model
of turbulent advection.

2.1. Kraichnan Ensemble

The Kraichnan model describes advection by a stochastic velocity
field �v(t, �r) with Gaussian mean-zero statistics, stationary and decorrelated
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in time, homogeneous and isotropic in space and with fixed compressibil-
ity degree ℘ characterizing the relative strength of the incompressible and
potential components of the velocity. As in any centered Gaussian ensem-
ble, the statistics of velocities is totally characterized by the 2-point func-
tion 〈�v(t, �r)⊗ �v(t ′, �r ′)〉. In what follows, we shall need the statistics of the
equal-time velocity differences that is determined by the reduced expres-
sion

1
2

〈(�v(t, �r)− �v(t ′, �r ′))⊗2〉 = δ(t− t ′)D0

∫
1− ei�k.(�r−�r ′)

|�k|d+ξ
��P(�k,℘) d�k

(2π)d

≡ δ(t− t ′) ��d(�r− �r ′). (5)

The rank 2 tensor ��d(�r ′ − �r) is the second order spatial structure function
of the velocity field. The rank 2 tensor ��P(�k,℘), invariant under rotations
and of trace 1, is taken to be

Pij (�k,℘)= 1−℘
d−1

(
δij − kikj

k2

)
+℘ kikj

k2

with 0≤℘≤1. The coefficient ℘ is equal to ∂i∂j dij (�r)
∂i∂idjj (�r) (summation conven-

tion!) for all �r 
= 0, so that it is meaningful to characterize ℘ as the ratio
〈(∂ivi )2〉
〈(∂ivj )2〉 even though the velocity field is not smooth for ξ < 2. The value
℘= 0 corresponds to an incompressible velocity field, whereas ℘= 1 to a
potential (e.g. irrotational) one. Note however that if the physical space is
one dimensional (case d= 1) then necessarily ℘= 1 because a one-dimen-
sional velocity field is always potential. One simply takes P = 1 in this
case. The spatial velocity structure function ��d(�r) scales in |�r| with power
ξ . We shall take ξ between 0 and 2. This choice guarantees that the typical
velocity realizations are non-Lipschitz. More exactly, they are Hölder-con-
tinuous with exponent 1

2ξ
′ for any ξ ′<ξ (the realistic turbulent velocities

are believed to have Hölder exponent � 1
3 in the limit of infinite Reynolds

numbers(19)). Note that the (positive) constant D0 in (5) has the dimension
(length)2−ξ

time .

2.2. Regularizing Effects

Real flows are always regularized at small scales by viscous effects.
That is, the velocity field is smooth and the power law scaling with ξ <2
is observed only at distances much larger than the viscous cutoff scale lν
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that becomes very small only for high Reynolds numbers (if the integral
scale of turbulence is kept fixed). The small �r behavior ∝|�r|ξ of ��d(�r) above
comes from the slow decay at large �k of its Fourier transform (the term
under the integral sign in (5)). We shall mimic the effect of viscosity in the
present model by introducing an ultraviolet regulator and replacing ��d(�r)
by

��d(�r; lν)≡D0

∫
1− ei�k.�r
|�k|d+ξ

��P(�k,℘)f (lν |�k|) d�k
(2π)d

(6)

where the function f is taken positive, smooth, decreasing, fast decay-
ing at infinity and with f (0)= 1, f ′(0)= 0. The viscosity ν itself may be
defined as

ν=D0l
ξ
ν (7)

which is the only combination of D0 and lν of dimension (length)2

time .
Another regularizing effect in real flows comes from finite molecular

diffusivity. The tracer field θ(t, �r) passively transported by the flow will be
smoothed by diffusion, see (3). In typical velocities, this smoothing effect
becomes important at scales much smaller than the diffusive cutoff scale
lκ . Beneath this scale diffusion dominates advection. We modeled molec-
ular diffusivity by adding white noise terms to the fluid particle velocities
(independent ones for different particles, see (1)). In the Kraichnan model,
the scale lκ beneath which diffusion dominates advection may be expressed
in terms of κ, D0 and lν , with lκ = 0 corresponding to κ= 0. The expres-
sion may be inverted to calculate κ in terms of D0, lκ , lν . Later on we shall
specify such a relation in the case when lκ � lν , see (28). This will provide
an expression for the Prandtl number Pr ≡ ν

κ
.

2.3. Statistics of Fluid Particles

Even in a simple random velocity ensemble, the statistics of the
Lagrangian flow may be quite complicated. It may be studied by looking
at the joint N -particle probability density functions (PDFs) defined by

P
t,t ′
N (�r1, . . . , �rN ; �r ′

1, . . . , �r ′
N) =

〈 N∏
n=1

δ(�r ′
n− �R(t ′; t, �rn))

〉
. (8)

Here, as before, the overline denotes the average over the (independent)
white noises and 〈 · · · 〉 stands for the velocity ensemble average. In the
Kraichnan model, due to the temporal decorrelation of velocities, the
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PDFs (8) are Markovian and they define a consistent hierarchy of N -par-
ticle stationary Markov processes that contains the complete information
about the statistics of the Lagrangian flow and of the velocities them-
selves.(17) In this paper we shall be interested uniquely in the behavior of
the separation of a pair of Lagrangian particles. The main object of our
interest will be the PDF of finding their time t ′ separation equal to �r ′,
given that their time t separation is equal to �r:

P t,t
′
(�r, �r ′)=

〈
δ(�r ′ − �R(t ′; t, �r)+ �R(t ′; t, �0))

〉
.

In stationary, time-reversal invariant velocity ensembles, such as the Kra-
ichnan model, P t,t

′
depends only on |t− t ′| and we may use the notation

P |t−t ′|.
The PDF P t,t

′
(�r, �r ′) governs the free decay of the 2-point function

of the passive tracer, evolving according to equation (2)4 with f =0.
If at time zero the tracer is distributed independently of the velocity
field and the trajectory noises, with a homogeneous 2-point function
〈θ(0, �r1) θ(0, �r2)〉=F(0, �r2 − �r1), then at a later time t its 2-point function
is given by

F(t, �r)=
∫
F(0, �r ′)P t,0(�r, �r ′)d�r ′ (9)

as follows from (3). Similarly, if the scalar source f is a random field with
mean zero and 2-point function

〈f (t, �r) f (t ′, �r ′)〉= δ(t− t ′) χ(�r− �r ′) (10)

and it is independent of the velocity field, the trajectory noises and the ini-
tial scalar distribution, then the evolution of the tracer 2-point function is
described by the relation

F(t, �r)=
∫
F(0, �r ′)P t,0(�r, �r ′)d�r ′ +

∫ t

0
ds
∫
χ(�r ′)P t,s(�r , �r ′

)d�r ′ (11)

as follows from (4) by taking averages.
Our aim is to describe the particle pair separation in Kraichnan

velocities at large scales, much larger than the cutoff scales lν and lκ . The
effective description will depend on the Prandtl number and on the scales

4In the Kraichnan velocity that is white in time, Eq. (2) should be interpreted as a Straton-
ovich stochastic differential equation, see e.g. Sect. II.C.3 of ref. 7.
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involved. Instead of maintaining the cutoffs finite, we want to give an
effective large scale theory without cutoffs but with some specific bound-
ary condition at vanishing separation. Such a theory should give rise to
the same behavior at the large scales of interest. An alternative way of
doing this is by taking the cutoffs lν and lκ to zero in a fashion that pre-
serves large scale behavior and to examine the boundary condition that
arises in this limiting process.

2.4. Lagrangian Dispersion

As first derived in ref. 15, the time evolution of the scalar 2-point
function of the tracer in the Kraichnan ensemble of velocities is governed
by the differential equation

∂tF =Mν,κF

where Mν,κ is a partial differential operator which can be written in terms

of the velocity structure function ��d and diffusivity κ as

Mν,κ ≡dij (�r; lν)∂i∂j +2κ �∇2.

It follows that the separation PDF takes the heat kernel form

P t(�r0, �r)= eMν,κ (�r0, �r). (12)

As we shall be only interested in distances between two particles, usually
called the Lagrangian pair dispersion, and not in the angular distribution
of the particle separation, we may project (12) to the rotationally invariant
sector. This is done by restricting the action of operator Mν,κ to functions
of the radial variable r=|�r| only. Mν,κ is a rotationally invariant operator
and it maps functions of r to functions of r. We shall denote by Mν,κ its
restriction to such functions. It is easy to show that

Mν,κ = D̃0

[
f1(r)∂

2
r +f2(r)∂r

]
(13)

with the coefficient functions f1,2(r)≡ f1,2(r; lν, lκ ) expressed in terms of

the spatial velocity structure function ��d by

D̃0f1(r)=dij (�r; lν)
rirj

r2
+2κ (14)

D̃0f2(r)= 1
r
dij (�r; lν)(δij − rirj

r2
)+2

d−1
r

κ (15)
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for any �r such that |�r|= r. For detailed calculation of the values of f1 and
f2 see Appendix F. It turns out that, for r much larger than the cut-off
scales lκ , lν , the function f1 is asymptotically proportional to rξ and the
function f2 to rξ−1. We choose the constant D̃0 proportional to D0, see
(5), so that r−ξ f1(r)→1 when r→∞.

In order to turn Mν,κ into a true operator on the half-line R+, we
also have to specify its domain D(Mν,κ). This boils down to the choice
of the boundary condition to impose at zero. The domain of Mν,κ , as
long as κ is positive, is some locally H 2 Sobolev space. For its rotationally
invariant elements this implies that their gradient vanishes at �r=0 result-
ing in the Neumann boundary condition ∂r |r=0 = 0 for Mν,κ . This way
equation (12) reduces in the rotationally invariant sector to the heat kernel
expression for the particle distance PDF

P t(r0, r)= etMν,κ (r0, r), (16)

where Mν,κ is the second order differential operator on the half-line of
r�0 given by (13), taken with the Neumann boundary condition at r =
0. We may view the right hand side of (16) as the transition probability
density of a Markov process r(t) that describes the distance between two
noisy Lagrangian particles in the random flow and treat the underlying
diffusion process with the adapted tools, see Appendix A. Alternatively, we
may interpret (16) as describing kernels of a semigroup of operators and
apply to it the usual analysis toolkit. Both methods will be developed.

2.5. Initial Classification of Boundary Behaviors

The possible boundary behaviors at the origin of the one-dimensional
diffusion process r(t) describing the inter-particle distance in the absence
of regularizations (i.e. for lν, lκ =0) may be easily classified.(6) In this case
the generator (13) of the process reduces to the operator

M≡M0,0 = D̃0r
ξ (∂2

r + aξ,℘

r
∂r ) (17)

with
aξ,℘ = d+ ξ

1+ ξ℘ −1 , (18)

see Appendix F. Let us note in passing for later use that we have the
implication

aξ,℘ <1 �⇒ a2,℘ <1 .
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For d�2 this is a simple consequence of (18). In the case d=1 recall that
℘= 1 and then aξ,1 = 0 for any value of ξ . Below, whenever the value of
the compressibility degree ℘ is understood, we shall write aξ instead of the
more unwieldy aξ,℘ and sometimes simply a if no confusion may arise.

In the case ξ <2 corresponding to spatially rough flows, we can intro-
duce the new coordinate

u=u(r)≡ 2
2−ξ D̃

−1/2
0 r1− ξ

2 . (19)

In this coordinate the generator (17) becomes

∂2
u +
(

2aξ − ξ
2− ξ

)
1
u
∂u (20)

and it describes the Bessel process (see(2) for a brief résumé) of parameter
−bξ or effective dimension deff =2(1−bξ ) where

bξ = 1−aξ
2− ξ . (21)

If deff is a positive integer then the corresponding Bessel process describes
the behavior of the norm | �W(t)| of the deff -dimensional Brownian motion
�W(t).

The general theory of the boundary behaviors of one-dimensional dif-
fusion processes was laid down by Feller in ref. 8. For the Bessel pro-
cess, the boundary behavior at zero is well known(2,22) and it depends on
the parameter or equivalently the effective dimension of the process. For
deff ≤0, zero is an exit boundary point (the realizations may arrive at zero
in a finite time, but they cannot come back from zero nor start there).
For 0<deff <2, zero is a regular boundary point (the realizations can go
to and leave zero in finite time). For deff �2, zero is an entrance bound-
ary (the realizations may start from zero, but no realization goes to zero
in finite time). The different boundary behaviors enumerated above corre-
spond respectively to the regimes in the Kraichnan model that were coined
strongly compressible (℘� d

ξ2 ), of intermediate compressibility ( d−2
2ξ + 1

2 <

℘< d

ξ2 ) and weakly compressible (℘≤ d−2
2ξ + 1

2 ), see.(11,5)

In the limiting case ξ =2 corresponding to spatially smooth flows, we
may introduce the new coordinate u= D̃

−1/2
0 ln r. In this coordinate the

generator (17) becomes
∂2
u + (a2 −1)∂u



1256 Gawȩdzki and Horvai

Table I. Regimes of the Unregularized Kraichnan Model

Flow Compressibility Characterization Implications Boundary

weak ℘� d−2
2ξ + 1

2 aξ,℘ �1 entrance

1>aξ,℘ >ξ −1
rough intermediate d−2

2ξ + 1
2 <℘<

d

ξ2
1>a2,℘

regular

strong ℘� d

ξ2 ξ −1�aξ,℘ exit

weak ℘� d
4 a2,℘ �1

smooth
strong ℘� d

4 a2,℘ �1
natural

and it describes the one-dimensional Brownian motion viewed in the frame
moving with speed −(a2 − 1) (i.e. the Brownian motion with a drift). In
this case r = 0 (corresponding to u= −∞) is a natural boundary point
with no realizations that attain it or leave it in finite time. The quan-
tity (a2 − 1)D̃1/2

0 = d−4℘
1+2℘ D̃

1/2
0 is the Lyapunov exponent of the Lagrang-

ian flow and it is non-negative in the weakly compressible regime ℘≤ d
4 ,

and non-positive in the strongly compressible one ℘� d
4 , vanishing at their

common point ℘= d
4 . We sum up this classification in Table I.

The first three lines correspond to rough velocity fields with ξ < 2.
The last two correspond to smooth ones with ξ = 2. Note that for d�4
the weakly compressible regime extends to the whole interval 0≤℘≤1.

The relationship between the boundary behavior of the one-dimen-
sional diffusion process r(t) describing the distance between Lagrangian
trajectories, on the one hand, and the different regimes of the Lagrang-
ian flow, on the other hand, may be explained intuitively. If the realiza-
tions can go to zero but cannot come back, then they are trapped there.
This implies coalescence of Lagrangian trajectories that characterizes the
strong compressibility regime, as first observed in ref. 11. If realizations
can go to and come back from zero, then one has to specify further the
boundary behavior. There may be (and, as we find, there are indeed) dif-
ferent possible behaviors of Lagrangian trajectories when they meet. This
is what happens for intermediate compressibility, as first noted in ref. 5.
If realizations starting from inside the half-line can never reach zero then
no trapping is possible. In this situation, corresponding to weak compress-
ibility, the realizations may, however, enter from zero if ξ <2 meaning that
the Lagrangian trajectories separate explosively leading to a non-determin-
istic Lagrangian flow.(1) For ξ = 2 the realizations can neither collapse to
zero nor explode from it. In smooth flows, different trajectories remain
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separated indefinitely in the future and the past, although they may behave
chaotically, with small separations growing exponentially in time.

2.6. Main Results

In any case, the regulated generator Mν,κ of Eq. (13) taken with Neu-
mann boundary condition at zero gives rise to a diffusion process r(t)
on the half-line describing the statistics of the Lagrangian dispersion. We
would like to know how this process behaves in the limit when lν, lκ →0.

The cases of the weakly and strongly compressible regimes where
the limiting dispersion process does not depend on the way in which the
limit is taken seem to have been treated adequately.(11,5) In these cases
only one process is possible in the limit and it corresponds either to
instantaneous reflection of trajectories when they meet (for weak com-
pressibility) or to coalescence of trajectories upon the first hit (for strong
compressibility).

In ref. 5,6 it was argued that, in the intermediate regime, the possi-
ble limiting processes are described by the unregulated generators M of
Eq. (17) with boundary conditions at zero depending on the way the limit
lν, lκ →0 is taken. Our analysis following similar lines (estimation of mean
time spent by two trajectories at distances ≤ lν) confirms this picture but
differs from ref. 6 in specific conclusions. The reason for the discrepancy is
the wrong estimate (56) in ref. 6 that resulted in the incorrect identification
of the required behavior of the Prandtl number. Also the limiting bound-
ary conditions were not correctly described in ref. 6 (the origin of that
mistake might lie in ref. 11 where the self-adjoint boundary conditions
were analyzed). We find in the fine-tuned limit lν, lκ → 0 the different, so
called sticky or slowly reflecting, boundary conditions (2,20) parametrized
by the amount of “glue” λ∈ [0,∞].

The sticky behavior can be pictured intuitively in the following way.
For simplicity let us consider just the case of Brownian motion on the
half-line. Concerning ordinary reflected Brownian motion, it is a well
known fact that, if it hits the end-point 0 of the half-line at some instant
t , then for any instant t ′>t it will hit again 0 between t and t ′ an infinite
number of times almost surely, but still the cumulated time spent at zero is
zero almost surely. Slowly reflected Brownian motion returns also almost
surely an infinite number of times after the first hit of the boundary, but
the cumulated time spent at zero (technically speaking the Lebesgue mea-
sure of those instants in [t, t ′] when the particle is at zero) will be propor-
tional to the time spent in an infinitesimal neighborhood (0,dx ) of 0 (not
containing 0!), the proportionality constant being λ/dx . Remarkably, how-
ever, for any λ<∞, the trajectory will almost surely never remain at 0 for
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an uninterrupted strictly positive time-interval. The two extreme values of
λ are λ=0 and λ=∞. In the first case zero time is spent at zero and, in
fact, one recovers the ordinary (instantaneous) reflection. The second case
with infinite time spent at zero corresponds to absorption (more precisely,
adsorption) at zero. Transposed to the case of Lagrangian dispersion, this
means that particles upon hitting each other either have no interaction
(case λ= 0), or they will tend to stay together for some positive amount
of cumulated time (case 0<λ<0), or they stick together permanently (case
λ=∞).

We shall give strong general arguments in favor of the convergence
of the particle dispersion to the sticky process and shall prove the con-
vergence for specific quantities. To analyze the effect of stickiness on
the passive transport, we shall construct and analyze the behavior of
the transition probabilities of the sticky dispersion process that govern,
in the appropriate lν, lκ → 0 limit, the evolution of the 2-point cor-
relation function of advected tracer in the homogeneous and isotropic
situation. It appears that the presence of stickiness induces anomalous
scaling of the stationary 2-point structure function of the forced tracer
and that it influences the rate of tracer energy condensation in the con-
stant mode. For the two extreme cases of instantaneous reflection and
absorption, not only the particle dispersion process but the entire fam-
ily of the consistent N -particle Markov processes has been constructed
in refs. 16 and 17. In the sticky case, the existence and the uniqueness
of such a construction is still an open problem and is not discussed fur-
ther here. Let us only note that ref. 18 may be interpreted as providing
such a construction for the limiting case of the one-dimensional flow with
ξ =0.

Let us recapitulate the situation that we are dealing with. We are
studying the intermediate compressibility regime of the Kraichnan model
of passive advection with velocity field smoothed at scales smaller than
lν and with molecular diffusivity κ dominant on scales smaller than lκ .
We shall be looking at the 2-point function of the advected tracer in the
isotropic sector or, alternatively, at the PDF of the distance between two
noisy Lagrangian trajectories. We want to know how those objects evolve
in the limit lν, lκ →0. The remainder of the paper is organized as follows.
In Section 3 we shall discuss the probabilistic aspects of the problem
studying the one-dimensional diffusion process describing the inter-particle
distance. The analytic approach based on the spectral analysis of the gen-
erator of the process will be developed in Section 4. The analysis of the
limits lν, lκ →0 in those sections is based on approximate calculations. In
Section 5, we study the sticky limiting behavior of the trajectories obtained
this way in more detail and we analyze its implications for the tracer
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transport. To confirm the approximate analysis of the first sections, we rig-
orously show in Section 6 that, in the intermediate compressibility regime,
the stationary 2-point structure function of the forced tracer indeed con-
verges when lν, lκ → 0 in the fine-tuned way to the one corresponding to
the sticky behavior of Lagrangian trajectories. Finally, in Conclusions, we
summarize the obtained results and mention some open problems that
they raise. Appendices contain more technical material relevant for the
main text.

3. STOCHASTIC PROCESS VIEWPOINT

3.1. Natural Scale and Speed Measure

In the intermediate compressibility regime, zero is a regular boundary
for the unregularized operator M of Eq. (17) according to the Feller crite-
ria. That is, if M is viewed as the generator of a stochastic process r(t) on
R+ then the realizations of the process may hit zero and come back from
it, with positive probability. In order to completely describe the process,
one needs to specify a boundary condition for M at zero. On the other
hand, for lν, lκ finite, the regularized generator Mν,κ of Eq. (13) should be
taken with Neumann boundary condition at zero. As we have discussed
above, this is because the problem on the half-line arose as the rotation-
ally invariant sector of a non-degenerate problem defined on the d-dimen-
sional space.

To see what boundary condition is obtained when lν, lκ →0, it is use-
ful to study the natural scale and the speed measure (see Appendix A)
of the process r(t) with positive lν, lκ and to determine their behavior in
the aforementioned limit. The natural scale S(r) is the (positively oriented)
coordinate in which the generator of the diffusion r(t) is without drift so
that S(r(t)) is a martingale (there is of course an equivalence class of such
coordinates, related by affine transformations). S(r) is strictly increasing
and continuous in r, so that the function s([r1, r2])≡S(r2)−S(r1) defined
on intervals can be extended to a measure on R+ absolutely continuous
w.r.t. the Lebesgue measure). The measure ds is sometimes called the nat-
ural scale measure. Often it is more practical to work with the density of
a measure than the measure itself. For a measure dµ and a coordinate r
on R+ we denote by µ(r) the density of dµ with respect to r. In the case
of ds we have in particular s(r)= dS (r)

dr .
In terms of the functions f1(r), f2(r) entering the generator Mν,κ one

can choose for the density with respect to r of the natural scale measure

s(r)= exp
(

−
∫ r

r0

f2(r
′)

f1(r
′)

dr ′
)

(22)
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where r0 > 0 is an arbitrary point of the open half-line R
∗+. It is easily

checked that in the corresponding coordinate S, the process becomes drift-
less (no first order derivative):

Mν,κ = D̃0 f1(r) s(r)
2∂2
S ≡ D̃0m(S)

−1∂2
S .

We shall define the speed measure as the measure dm with den-
sity m(S) with respect to the coordinate S. For convenience, we have
multiplied the speed measure by 2D̃0 with respect to the conventions of
Appendix A in order to avoid such factors in later expressions. The dif-
fusion process S(t)=S(r(t)) is then a (random, i.e. realization dependent)
re-parametrization of the Brownian motion W(τ), i.e. S(t)=W(τ(t)), with

2D̃0
dt
dτ

= m(S)|S=W(τ) .

For later use we also calculate the density of the speed measure with
respect to the coordinate r:

m(r)=m(S)dS
dr

= [f1(r)s(r)]
−1 = 1

f1(r)
exp

(∫ r

r0

f2(r
′)

f1(r
′)

dr ′
)

(23)

with the same r0 as for the natural scale above.
We expect that the process obtained in the lκ , lν → 0 limit corre-

sponds to the natural scale and the speed measure that are appropriate
limits of the same objects for lκ , lν finite. In the next subsections, we shall
analyze those limits in an approximate way.

3.2. Approximate Calculations

We should know the dependence of functions f1 and f2 on the reg-
ularization scales lν, lκ . If lν < lκ then the smoothing of the velocity field
is only significant at scales where it is already not the advection but the
diffusion term that dominates, that is to say, the smoothing of the veloc-
ity plays no role and we may take lν =0 immediately. This case goes with-
out difficulties and has been studied in ref. 10, see also ref. 5. The case
which is interesting for us is the other one, when lκ < lν . In this case we
feel the diffusivity between 0 and lκ , then we feel the smoothing of the
velocity field between lκ and lν and finally above lν we are in the genu-
ine Kraichnan regime with some scaling exponent ξ of the second order
velocity structure function.
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In the present section, the calculations will be made by replacing
functions f1, f2 by functions glued piecewise from pure powers, represent-
ing the different scaling behaviors in different subintervals. The gluing is
done so that the function f1 stays continuous. That the model functions
obtained this way are indeed correct approximations of functions f1, f2
for the regularized Kraichnan model is shown in Appendix F. Thus for
r > lν we shall take f1(r) and f2(r) as in the (scale-invariant) Kraichnan
model, that is f1(r)= rξ and f2(r)= aξ r

−1f1(r) with aξ defined in (18).
For lκ < r < lν the functions f1, f2 will behave as in the smooth Kraich-
nan model (i.e. for ξ =2), and we have to match them at lν with the val-
ues already given above (approximately; what matters, as we shall see, is
only the order of magnitude and the ratio of the functions). Thus we shall
take f1(r)= r2l

ξ−2
ν and f2(r)=a2r

−1f1(r). In the same way for r < lκ the
functions f1 and f2 will be like in the pure diffusive case which, inciden-
tally, is the same as the Kraichnan model with ξ =0. With the same kind
of matching as above, but now at lκ , we get f1(r)= l2κ l

ξ−2
ν and f2(r)=

(d − 1)r−1f1(r) there. Table II sums up our choices for the approximate
versions of f1 and f2.

With the pure power choices for f1 and f2, it is straightforward
to calculate the natural scale and the speed measure on the intervals
[0, lκ ], [lκ , lν ] and [lν,∞). Let us first evaluate the ubiquitous subexpression
s(r)= exp(− ∫ r

r0
f2(r

′)/f1(r
′)dr ′). We see that in each of the above inter-

vals, f2(r
′)/f1(r

′)=a/r ′ with some a constant on the interval, so the inte-
gral evaluates to logarithms. Again, results are summed up in Table III.

Table II. Approximate Versions of Functions f 1 and f 2

Scale f1(r) rf2(r)/f1(r)

r ∈ [0, lκ ] l2κ l
ξ−2
ν d−1

r ∈ [lκ , lν ] r2l
ξ−2
ν a2

r ∈ [lν ,∞] rξ aξ

Table III. Densities of the Natural Scale and Speed Measures

Scale s(r) m(r)

r ∈ [0, lκ ] (r0/lν)
aξ (lν/ lκ )

a2 (lκ/r)
d−1 r

−ξ
0 (lν/r0)

aξ−ξ (lκ / lν)a2−2(r/ lκ )
d−1

r ∈ [lκ , lν ] (r0/lν)
aξ (lν/r)

a2 r
−ξ
0 (lν/r0)

aξ−ξ (r/ lν)a2−2

r ∈ [lν ,∞] (r0/r)
aξ r

−ξ
0 (r/r0)

aξ−ξ
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3.3. Limit of the Natural Scale

It is easy to see that if we maintain r0>0 fixed, then the density s(r)
of the natural scale measure tends pointwise to

s0(r)≡ raξ0 r
−aξ . (24)

Recall that s(r)= dS (r)
dr . Thus S(r) has to be the integral of s(r), but we

have the freedom to choose the constant of integration. We adopt the
choice

S(r)≡
∫ r0

0
s0(r

′)dr ′ +
∫ r

r0

s(r ′)dr ′ .

This definition has the advantage that, for r >lν , the value of S(r) is inde-
pendent of lκ , lν , because s(r)= s0(r) there. In fact we have

S(r)=S0(r)≡
∫ r

0
s0(r

′)dr ′ = 1
1−aξ

raξ
0 r1−aξ if r � lν . (25)

In particular, in the limit lκ , lν → 0, the natural scale function becomes
equal to S0(r) for r >0. Note that S0(0)=0, observe, however, that if d�2
then S(0)= −∞ as long as lκ is positive since in that case the integral∫ r
lκ
s(r ′)dr ′ diverges as r goes to zero. Relation (25) may be inverted to

give

r(S)= [(1−aξ )r−aξ0 S]
1

1−aξ � lν if S� 1
1−aξ r

aξ
0 l

1−aξ
ν . (26)

3.4. Limit of the Speed Measure

Let us now calculate the speed measure of each of the intervals [0, lκ ],
[lκ , lν ] and for the sake of completeness [lν,R] for arbitrary R>lν .

For [0, lκ ] we get

m([0, lκ ]) =
∫ lκ

0
m(r)dr =

∫ lκ

0

1

l2
κ l
ξ−2
ν

(
lν
r0

)aξ ( lκ
lν

)a2
(

r
lκ

)d−1

dr

= r
−aξ
0

d
l
(aξ+1−ξ)+(1−a2)
ν la2−1

κ .

In the intermediate compressibility regime, aξ + 1 − ξ > 0 and 1 − a2 >

0, hence we have a positive power of lν and a negative power of lκ .
Depending on the way in which lν, lκ go to zero, m([0, lκ ]) can tend to
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zero, infinity or some fixed constant. For the finite limit one should have
l
(aξ+1−ξ)+(1−a2)
ν ∝ l1−a2

κ , i.e.

lκ ∝ l
1+ aξ+1−ξ

1−a2
ν (27)

The exponent of lν being greater than 1, this relation is compatible with
the condition lκ � lν in the limit lν, lκ →0. In a moment we shall explain
how the limit lν, lκ →0 taken with condition (27) corresponds to the sticky
boundary condition. For now let us simply give some equivalent formu-
lations of (27). From (14), it can be seen that 2κ = D̃0f1(0). Within our
current modeling of f1, we have f1(0)= lξ−2

ν l2κ so that

κ= 1
2
D̃0 l

ξ−2
ν l2κ . (28)

We shall use this equation to fix the relation between κ and lκ also in the
exact approach. Recalling definition (7), we see that the Prandtl number
Pr ≡ ν

κ
is proportional to (lν/ lκ )2 for lκ � lν so that imposing relation (27)

is equivalent to

κ ∝ l
ξ+2

aξ+1−ξ
1−a2

ν or Pr ∝ l
−2

aξ+1−ξ
1−a2

ν .

In particular κ goes to zero while Pr goes to infinity when lν goes to zero.
The calculation of the speed measure of the interval [lκ , lν ] is per-

formed similarly:

m([lκ , lν ]) =
∫ lν

lκ

m(r)dr =
∫ lν

lκ

1

r2l ξ−2
ν

(
lν
r0

)aξ ( r
lν

)a2

dr

= r
−aξ
0

a2 −1
l
aξ−a2+2−ξ
ν

(
la2−1
ν − la2−1

κ

)
.

Now, since in the intermediate compressibility regime a2 − 1< 0, in the
limit lν, lκ →0 it will be la2−1

κ that dominates la2−1
ν so that

m([lκ , lν ]) ≈ r
−aξ
0

1−a2
l
(aξ+1−ξ)+(1−a2)
ν la2−1

κ .

We are in exactly the same situation as above and the same conclusions
hold.

Finally the speed measure of the interval [lν,R] for some arbitrary
R>lν is
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m([lν,R]) =
∫ R

lν

m(r)dr =
∫ R

lν
r−ξ

(
r
r0

)aξ
dr

= r
−aξ
0

aξ +1− ξ
(
Raξ+1−ξ − laξ+1−ξ

ν

)
≈ r

−aξ
0

aξ +1− ξ R
aξ+1−ξ

and it tends to a finite limit when lν, lκ →0.
At this point we may describe explicitly the speed measure dm0

obtained as the weak limit of speed measures for positive lν, lκ when
lν, lκ →0 in such a way that

l
(aξ+1−ξ)+(1−a2)
ν la2−1

κ → λ (29)

for some λ∈ [0,+∞] (note that λ has dimension (length)aξ+1−ξ ). On the
open half-line of r >0 the density of dm0 is

m0(r)= r−aξ0 raξ−ξ . (30)

Besides, dm0 has a mass at zero, given by

m0({0})= lim
lν ,lκ→0

(m([0, lκ ])+m([lκ , lν ])) = d+1−a2

(1−a2)d
r
−aξ
0 λ . (31)

It is convenient to characterize the “stickiness” of the boundary at r = 0
by the quantity λ̃≡m0({0})/[rξ−aξ m0(r)]r=0 which we shall call the glue
parameter. We obtain

λ̃= d+1−a2

(1−a2)d
λ (32)

This relation will be compared to the value produced by another approach
in the next section, and finally to the exact result (62) calculated using the
precise forms of f1, f2 instead of the approximate versions of Table II.

3.5. Convergence on the Natural Scale

Here we shall show that the operations of changing coordinates from
the original scale r to natural scale S and of taking the weak limit of the
speed measure dm when lν, lκ → 0 commute. Observe that for d = 1 the
natural scale coincides with the original one so we shall be preoccupied
here only by the case d�2.
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In the preceding subsection we computed the limit of m(r), working
on the original scale r. Here we shall pass first to the natural scale S and
then take the limit of m(S) and finally check that the result agrees with
that of the preceding subsection. This is in order to exclude that we are
in the kind of pathological case presented in Appendix B. A priori such a
situation could arise here because the notions of weak convergence on the
original scale and on the natural scale do not coincide.

The density of the speed measure w.r.t. the natural scale S is m(S)=
m(r)s−1(r). From (26) it is clear that for any S > 0 we can take lν suf-
ficiently small to have r(S) > lν and thus m(r)=m0(r) and s(r)= s0(r)

so that m(S)=m0(r)s
−1
0 (r)=m0(S0). Hence the trivial convergence of the

density of the speed measure on the open half-line of positive S to m0(S0)

in agreement with the result of the preceding subsection.
We still have to see what happens for S<0 and to show that the limit

m0(S0) of the density of the speed measure has a Dirac delta term at S0 =
0. Let us evaluate for S <0 the asymptotic behavior of r(S) as lκ , lν → 0.
Observe that S(lν)=

∫ lν
0 s0(r

′)dr ′>0. So if S <0 then r(S)< lν . Now

S(lκ)=
∫ lν

0
s0(r

′)dr′ −
∫ lν

lκ
s(r ′)dr ′

= 1
1−aξ r

aξ
0 l

1−aξ
ν − 1

1−a2
r
aξ
0 l

1−aξ
ν

[
1−
(
lκ

lν

)1−a2
]

−→ 0

when lν → 0 with lκ < lν since both 1 − aξ and 1 − a2 are positive. This
shows that for S < 0 fixed, we must have r(S)< lκ asymptotically. Let us
explicitly treat the case d >2. The case d=2 is only a bit different because
of the logarithmic divergences. For r < lκ ,

S(r)=S(lκ)−
∫ lκ

r

s(r ′)dr ′

=S(lκ)− 1
2−d r

aξ
0 l

a2−aξ
ν ld−1−a2

κ (l2−d
κ − r2−d) .

Suppose that r=o(lκ ) (consistency will be checked) so that l2−d
κ =o(r2−d).

Recalling that S(lκ)→0, we infer that, for fixed S <0,

r(S)∼
[
(2−d) r−aξ0 l

aξ−a2
ν l1−d+a2

κ S
] 1

2−d

=
[
(d−2) r

−aξ
0 (−S)

]− 1
d−2
[
l
1−aξ
ν (lκ/ lν)

1−a2
] 1
d−2

lκ .
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We immediately check that r(S)= o(lκ ) so that our estimates are consis-
tent, as promised. It can also be seen that this asymptotics for r(S) is uni-
formly valid on (−∞, S] for any S <0. Now we may write

m(S)= [m(r) s−1(r)]r=r(S)

∼
[
(d−2)−(d−1) r

aξ
0 (lκ/ lν)

1−a2 l
1−aξ
ν

] 2
d−2

l2−ξ
ν (−S)−[2+ 2

d−2 ]
.

We infer that m(S) decays as a power of −S when S→−∞, fast enough
to be integrable. We also see that the coefficient in front of the power of
−S goes to zero when lν →0 with lκ < lν .

We still have to show that m0(S) has a Dirac delta contribution at
zero. This can now be seen because

∫ S (lν )

−∞
m(S)dS=

∫ lν

0
m(r)dr

and we have shown that the right hand side has the limit given by (31).
On the other hand we have just seen that for any S <0

∫ S

−∞
m(S′)dS ′ −→ 0

and also that S(lν)>0 and S(lν)→0. This permits to conclude that m0(S0)

has a Dirac delta contribution at S0 = 0 with the coefficient m0({0}). An
analogous reasoning for the case d=2 gives the same result regarding the
(weak) convergence of the measure dm on the natural scale. The limit
measure coincides with the limiting speed measure in the r coordinate re-
expressed in the limiting natural scale coordinate S0.

3.6. Conjecture

It is legitimate to expect that the process r(t) converges in an appro-
priate sense to the one corresponding to the limit natural scale function
S0 �0 given in (25), and the speed measure with density

m0(S0)= r−aξ /bξ0 [(1−aξ )S0]
−2+ 1

bξ + m0({0}) δ(S0) .

Such a process is, in the natural scale coordinate S0, a reparametrization
of the Brownian motion |W(τ)| instantaneously reflecting at zero: S0(t)=
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|W(τ(t))|, see Appendix A. Away from zero, 2D̃0
dt
dτ =m0(S0)|S0=|W(τ(t))|.

At zero, the reparametrized process spends time proportional to m0({0})
times the local time at zero of |W(τ)| (although never an uninterrupted
open interval of time). This is the “sticky” or “slowly reflecting” boundary
behavior(3,22) with the glue parameter λ̃∝m0({0}), see (32). The extreme
cases λ̃= 0 and λ̃= ∞ correspond, respectively, to instantaneous reflec-
tion and total absorption of the process at zero.

This was our first argument for the sticky boundary behavior.

4. LINEAR OPERATOR VIEWPOINT

Our next argument is based on the study of the (generalized) eigen-
functions of the operator Mν,κ of Eq. (13) in the limit lν, lκ →0. If we take
f1, f2 composed as above from pure powers, then we are able to calculate
exactly the eigenfunctions and trace their limiting behavior. This argument
is somewhat more shaky because it needs some explicit, not totally realis-
tic (though representative), form of the functions f1 and f2 (before, such
a representation was really required to hold only approximately).

4.1. Derivation of the Boundary Condition at Zero

Let us consider the differential operator D̃−1
0 Mν,κ =f1(r)∂

2
r +f2(r)∂r

with the approximate form of functions f1 and f2 given in Table II. Thus
for r > lν we take f1(r)= rξ and f2(r)= aξ r

−1f1(r) so on the interval
[lν,∞] a pair of linearly independent eigenfunctions corresponding to the
eigenvalue −E of D̃−1

0 Mν,κ is


±
E(r)= r

1−aξ
2 J±bξ

(√
E r

2−ξ
2

)

where bξ is given by (21) and Jb is the Bessel function of the first kind
of parameter b. Note that these eigenfunctions are independent of lν, lκ .
When we impose at zero a boundary condition5, in general the eigenfunc-
tions of the operator with boundary condition will form a one dimen-
sional linear subspace of the two dimensional linear space spanned by 
±

E .
That is, if the linear combination c̃+E


+
E + c̃−E
−

E is an eigenfunction veri-
fying the boundary condition at zero, then c̃+E/c̃

−
E is fixed (depending on

E and the boundary condition, of course). In part we shall proceed in the

5Exactly one, given as L[
E ]=0 where L is an operator that can be expressed as the limit at
zero of some finite linear combination of derivatives of order 0 or higher, with not necessar-
ily constant coefficients.
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opposite way. First we calculate c̃+E/c̃
−
E for lν, lκ finite. Next we deduce the

effective boundary condition at zero that would give the same quotient if
lν, lκ were zero. Finally we look at the limit of c̃+E/c̃

−
E when lκ , lν →0, and

deduce the “limit” of the effective boundary condition.
First of all we give explicitly a generating pair of eigenfunctions of

D̃−1
0 Mν,κ associated with the eigenvalue −E, on each of the intervals

[0, lκ ], [lκ , lν ], [lν,∞]. We shall denote these six functions g±
1 , g

±
2 , g

±
3 respec-

tively. Because at zero we have the Neumann boundary condition, on
[0, lκ ] we give only the corresponding eigenfunction:

g−
1 (r)=C1r

2−d
2 J− 2−d

2

(√
E/κ r

)
with C1 =2− 2−d

2 �

(
1− 2−d

2

)
(E/κ)

2−d
4

(the normalization was chosen for later convenience). On [lκ , lν ] we may
set

g±
2 (r)= rγ±(E,lν ) where γ±(E, lν)=

1−a2 ±
√
(1−a2)

2 −4l2−ξ
ν E

2

(recall that 1 − a2 > 0 in the intermediate compressibility regime). Finally
on [lν,∞] we take

g±
3 (r)=2±bξ �(1±bξ )E∓ bξ

2 
±
E(r) .

In order to construct the eigenfunction of Mν,κ on the whole half-line
[0,∞], we have to find the correct linear combinations of the generating
pairs on each sub-interval by matching the functions and their derivatives
at each border point. Formally, if we have to match c+i g

+
i + c−i g

−
i with

c+j g
+
j + c−j g−

j at r, then, in matrix notation, we should have

(
g+
i (r) g

−
i (r)

g+
i

′
(r) g−

i

′
(r)

)(
c+i
c−i

)
=
(
g+
j (r) g

−
j (r)

g+
j

′
(r) g−

j

′
(r)

)(
c+j
c−j

)

where g′(r)≡ ∂rg(r). That is to say,

(
c+j
c−j

)
=
(
g+
j (r) g

−
j (r)

g+
j

′
(r) g−

j

′
(r)

)−1(
g+
i (r) g

−
i (r)

g+
i

′
(r) g−

i

′
(r)

)(
c+i
c−i

)
.

Now, because on [0, lκ ] we take g−
1 as the eigenfunction, it follows

that, by making the above described matchings, we get on [lν,∞] the lin-
ear combination c+Eg

+
3 + c−Eg−

3 with
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(
c+E
c−E

)
=
(
g+

3 (lν) g
−
3 (lν)

g+
3

′
(lν) g

−
3

′
(lν)

)−1(
g+

2 (lν) g
−
2 (lν)

g+
2

′
(lν) g

−
2

′
(lν)

)(
g+

2 (lκ ) g
−
2 (lκ )

g+
2

′
(lκ ) g

−
2

′
(lκ )

)−1(
g−

1 (lκ )

g−
1

′
(lκ )

)
. (33)

Note that
c̃+E
c̃−E

= �(1+bξ )
�(1−bξ )

(
4
E

)bξ c+E
c−E
.

For a general matrix
(
a b
c d

)
its inverse is 1

ad−bc
(
d −b

−c a

)
. We use this for-

mula to rewrite (33), but since we are only interested in the ratio c+E/c
−
E ,

we get rid of the 1
ad−bc factor. Thus

(
c+E
c−E

)
∝
(
g−

3
′
(lν) −g−

3 (lν)

−g+
3

′
(lν) g+

3 (lν)

)(
g+

2 (lν) g
−
2 (lν)

g+
2

′
(lν) g

−
2

′
(lν)

)(
g−

2
′
(lκ ) −g−

2 (lκ )

−g+
2

′
(lκ ) g+

2 (lκ )

)(
g−

1 (lκ )

g−
1

′
(lκ )

)
.

(34)

This gives an explicit formula for c+E/c
−
E for lκ , lν finite. In Appendix C

we show that if we take lν, lκ to zero in a way that the limit (29) exists
(notation lν, lκ

λ→0 ) then

lim
lν ,lκ

λ→0

c+E
c−E

= − d+1−a2

(1−a2)(1−aξ )d λE . (35)

It is not difficult to identify the boundary condition implied by this
relation. Recall that the eigenfunctions of D̃−1

0 Mν,κ associated to the
eigenvalue −E are of the form 
E(r)=c+Eg+

3 (r)+c−Eg−
3 (r) for r >lν , (that

is for r >0 if lν, lκ →0). Furthermore we see that

g−
3 (0)=1 , raξ g−

3
′
(r)|r=0 =0 ,

g+
3 (0)=0 , raξ g+

3
′
(r)|r=0 =1−aξ .

From this we conclude that 
E verifies


E(0)= c−E and raξ
′
E(r)|r=0 = (1−aξ )c+E . (36)

For convenience let us denote D̃0r
aξ ∂r ≡F and, as before, M0,0 ≡M. Now

(36) with (35) imply that

D̃−1
0 (F
E)(0)=−λ̃E 
E(0)
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where λ̃ is given by (32). Since 
E is an eigenvector of D̃−1
0 M with eigen-

value −E, we obtain

(F
E)(0) = λ̃ (M
E)(0) . (37)

This last form may be read as an independent of E boundary condition
that all 
E verify. It becomes then the boundary condition for M. Note
that the coefficient λ̃ is in [0,+∞]. We introduce thus the operator Mλ̃

which is the version of M with the domain D(Mλ̃) corresponding to the
boundary condition (37). In the next subsection we shall show that Mλ̃

is the Kolmogorov backwards generator of a sticky process whose glue
parameter is equal to λ̃.

4.2. Interpretation of the Boundary Condition

To see that boundary condition (37) corresponds to a slowly reflecting
boundary, we may calculate the mass at zero of the speed measure of the
diffusion process generated by Mλ̃. The speed measure may be defined, up
to a multiplicative constant, as the measure dm with respect to which the
generator Mλ̃ is self-adjoint.(20) It is straightforward to see that for r > 0
we may take for the density of the speed measure with respect to r (recall
notation of Section 3)

m(r)= raξ−ξ . (38)

We have in particular the relation m(r)M = D̃0∂r ◦ raξ ∂r . Here, as in the
following, if we write M instead of Mλ̃, we mean not the operator with a
specified domain but only the corresponding differential expression. Let us
denote the L2 scalar product with respect to the measure dm by (. , .)m.
For Mλ̃ to be symmetric with respect to dm, we need that (g1,Mg2)m =
(Mg1, g2)m for any g1, g2 ∈ D(Mλ̃). Using (38) for the density of dm on
the open half-line (0,∞), and putting in a separate term the effect of a
possible mass of dm at zero, this may be written as

g1(0)(Mg2)(0)m({0})+
∫ ∞

0+
g1(r)(Mg2)(r)m(r)dr

= (Mg1)(0)g2(0)m({0})+
∫ ∞

0+
(Mg1)(r)g2(r)m(r)dr (39)

where the limit 0+ in the integrals indicates that the integral is over the
open half-line (0,∞). The integral on the left hand side may be rewritten
using integration by parts as
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∫ ∞

0+
g1(r)(Mg2)(r)m(r)dr

=g1(0)(Fg2)(0)− (Fg1)(0)g2(0)+
∫ ∞

0+
(Mg1)(r)g2(r)m(r)dr .

We then see that (39) holds if and only if

[(Mg1)(0)m({0})− (Fg1)(0)] g2(0) = g1(0) [(Mg2)(0)m({0})− (Fg2)(0)]

(strictly speaking the above expression is defined in the limit r → 0).
This condition may only be verified for all g1, g2 ∈ D(Mλ̃) if, for all g ∈
D(Mλ̃), ([m({0})M − F ]g)(0)= 0. Recalling the boundary condition (37),
this amounts to the equality

m({0})= λ̃ . (40)

We infer this way that the speed measure of Mλ̃ has a finite mass at zero,
which means that Mλ̃ describes a process that is slowly reflecting at zero.
From (40) and (38) we see that the glue parameter of the slow reflection
is λ̃.

More generally, the speed measure found in this section is coherent
with the one we got from the stochastic process treatment. Compare (30),
(31) with (38), (40), respectively, to see that the two speed measures are
proportional (the second equals r

aξ
0 times the first one).

5. STICKY PROCESS

Now that we know the effective time evolution operator on large
scales, we may inquire how the corresponding transition probabilities of
the Lagrangian dispersion and other related quantities look like, what is
their long time behavior and the induced effect on tracer transport.

5.1. Transition Probabilities

The transition probabilities P t
λ̃
(r;dr ′) for the process with generator

Mλ̃ are given by the self-adjoint exponential operators etMλ̃ defined in
L2(m(dr)). It will be, however, more convenient to use the more standard
L2(dr) conventions for the kernels and explicitly write the contribution
due to the atomic term of dm. In such notation,

P t
λ̃
(r;dr ′) = etM λ̃ (r , r ′)dr ′ + λ̃

[
etM λ̃ (r , ρ) ρξ−aξ

]
ρ=0

δ(r ′)dr ′ . (41)
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The term concentrated at zero assures the conservation of probability∫
P t
λ̃
(r;dr ′)=1 as is shown in Appendix E. Its presence implies that sticky

trajectories spend together positive time. In particular, the mean of the
time that two trajectories starting at moment zero at distance r spend
together up to moment t is λ̃

∫ t
0 [esMλ̃(r, ρ) ρξ−aξ ]ρ=0 ds .

To compute the kernel etMλ̃(r, r ′), it will be more convenient to work
with Schrödinger type operators. To this end, we shall first change vari-
ables by setting u= 2

2−ξ D̃
−1/2
0 r

2−ξ
2 . Recall from (20) that this transforms

M to the generator of a Bessel process of parameter −b with b given by
(21) (to ease the notation, we drop the subscript ξ ). After passing to the
new variable, we conjugate M by the multiplication by ub−

1
2 and finally

multiply it by −1 to obtain the differential operator N of the form

N ≡−∂2
u + b2 − 1

4

u2
.

The boundary condition (37) imposed on Mλ̃ becomes for N the condition

u1−2b∂uu
b− 1

2 ϕ(u)|u=0 =−µC−1
b ub−

1
2Nϕ(u)|u=0 (42)

where Cb=22b−1 �(b)
�(1−b) is introduced for convenience, and

µ = (2− ξ)2b−1 �(b)

�(1−b) D̃b−1
0 λ̃

is a positive constant proportional to λ̃. We shall denote by Nµ the oper-
ator N with this boundary condition. Note for later use the relationship

etMλ̃(r, r ′)dr ′ =u(r)b− 1
2 e−tNµ(u(r),u(r ′))u(r ′)

1
2 −b du(r ′) (43)

The spectral properties of the operator Nµ are studied in detail in
Appendix D. Here we rely on those results. The spectrum of Nµ is R+.
The (generalized) eigenfunction ϕµ,E(u) of this operator, associated to the
eigenvalue E�0, may be taken as

ϕµ,E(u)=u 1
2

[
J−b
(√

Eu

)
−µE1−bJb

(√
Eu

)]
. (44)
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The (scalar) spectral measure corresponding to this choice (of normaliza-
tion) of the eigenfunctions is

dνµ(E )= dE
2(1−2µE 1−b cos(bπ)+µ2E 2(1−b))

. (45)

The kernel of the exponential of the operator Nµ may be written using
spectral calculus as

exp(−tNµ)(u, v)=
∫ ∞

0
e−tE ϕµ,E(u)ϕµ,E(v)dνµ(E ) . (46)

An important aspect of the flow is the behavior of two particles
released at the same point at the same time. The evolution of the
inter-particle distance of such a pair is described by the r→0 limit of
P t
λ̃
(r;dr ′). Substituting (46) into (43) and that in turn into (41), we obtain:

lim
r→0

P t
λ̃
(r;dr′) = 2b

�(1−b)
(∫ ∞

0
e−tE E− b

2 ϕµ,E (u(r ′))dνµ(E )
)

u(r′)
1
2 −b du(r ′)

+ 2(2−ξ)2b−1D̃b−1
0

�(1−b)2 λ̃
(∫ ∞

0
e−Et E−b dνµ(E )

)
δ(r ′)dr ′ . (47)

The first term on the right hand side is the regular contribution abso-
lutely continuous w.r.t. dr ′. It describes the probability that a pair of
particles starting together at time zero are separated at time t by some
finite distance r ′ with dr ′ precision. Presence of such a term indicates that
the sticky Lagrangian flow should be stochastic in each velocity realiza-
tion, just as the instantaneously reflecting flow corresponding to λ̃ = 0.
The second term on the right hand side of (47) is concentrated at r ′ = 0
and describes the probability that two trajectories starting together will be
together at time t . It is absent for λ̃= 0. Recall, however, from(11) that in
the strongly compressible phase ℘ > d

ξ2 one has lim
r→0

P t
λ̃
(r;dr′)= δ(r ′)dr ′

signaling that the Lagrangian flow is deterministic there. Appearance of
both regular and singular contributions to (47) in the sticky flow is one
of the indications of a hybrid nature of this case.

In the special instance of µ=0 or µ=∞, corresponding to instanta-
neously reflecting or absorbing boundary at r=0, the integral in (46) may
be calculated explicitly. We make the change of variables E= z2 and then
use Weber’s formula, Eq. (6.633.2) of ref. 12, to obtain
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exp(−tN0)(u, v) =
∫ ∞

0
e−tEu

1
2 J−b

(√
Eu

)
v

1
2 J−b

(√
Ev

)
dE
2

= u
1
2 v

1
2

∫ ∞

0
e−tz

2
J−b(zu)J−b(zv) zdz

=
√
uv

2t
exp

(
−u

2 +v2

4t

)
I−b

(uv
2t

)

where I−b is the modified Bessel function of the first kind of index −b.
Analogously,

exp(−tN∞)(u, v)=
∫ ∞

0
e−tEu

1
2 Jb(

√
Eu)v

1
2 Jb(

√
Ev)

dE
2

=
√
uv

2t
exp

(
−u

2 +v2

4t

)
Ib

(uv
2t

)
.

We then have

exp(tM∞
0
)(r, r ′)

= 1

D̃0(2− ξ)t r
1−aξ

2 r ′
aξ+1−2ξ

2 exp

(
− r

2−ξ + r ′2−ξ

D̃0(2− ξ)2t

)
I±b

(
2(rr ′)

2−ξ
2

D̃0(2− ξ)2t

)
. (48)

It can be easily shown that these results are in agreement with the well
known transition probabilities of the Bessel process with reflecting or
absorbing boundary at zero.(2)

Some other quantities of interest are the hitting times Hr ′ at some
point r ′, in particular, the doubling and halving times of the inter-particle
distance, see e.g. ref. 4, Sect. 2C. Their expectations are given by the fol-
lowing formulae (with notations of Appendix A)

Er (e
−αHr′ )=

r
ξ−2aξ

4 φµ,−α(
2D̃−1/2

0
2−ξ r

2−ξ
2 )

r ′
ξ−2aξ

4 φµ,−α(
2D̃−1/2

0
2−ξ r ′

2−ξ
2 )

if r <r ′

and

Er (e
−αHr′ )=

r
ξ−2aξ

4 ψ−α(
2D̃−1/2

0
2−ξ r

2−ξ
2 )

r ′
ξ−2aξ

4 ψ−α(
2D̃−1/2

0
2−ξ r ′

2−ξ
2 )

if r >r ′

where φµ,−α is the solution of the differential equation (N +α)φ= 0 that
verifies the boundary condition (42) at zero and ψ−α is the solution that
tends to zero at infinity. We refer here to Appendix A and Appendix D,
in particular to formula (63) of the former and formulae (68) and (69) of
the latter.
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5.2. Long Time Asymptotics

The sticky transition probability densities P t
λ̃
(r;dr′) of the inter-par-

ticle distance determine the behavior of the passive tracer 2-point func-
tion obtained in the corresponding limit lκ , lν → 0. The free decay of the
tracer 2-point function is described directly by the transition probability
P t
λ̃
(r;dr′). Indeed, for an initial tracer distribution with a homogeneous

isotropic 2-point correlation function F(0, r), at time t the tracer distribu-
tion will be

F(t, r)=
∫ ∞

0
F(0, r ′)P t

λ̃
(r;dr′) , (49)

as follows from (9). Thus the long time decay of the tracer 2-point func-
tion is determined by the large t asymptotics of etMλ̃(r, r ′). Similarly, with
isotropic forcing as in (10) and, for simplicity, no tracer at time zero,

F(t, r)=
∫ t

0
ds
∫ ∞

0
χ(r′)Ps

λ̃
(r;dr′) , (50)

as follows from (11). Thus the long time behavior of the forced tracer 2-
point function is determined by the large t asymptotics of

∫ t
0 e

sM
λ̃(r, r ′)ds.

We shall assume fast decay for large r of both F(0, r) in the unforced case
and of χ(r) in the forced one.

As before, it will be more convenient to study instead of Mλ̃ the oper-
ator Nµ. To obtain the large t behavior of e−tNµ(u, v) or of Lµ(t;u, v)≡∫ t

0 e
−sNµ(u, v)ds, we may consider their Laplace transforms given for α>0

(where α is the variable conjugate to t) by the resolvent kernel

(Nµ+α)−1(u, v) =
∫ ∞

0
e−αt e−tNµ(u, v)dt

and by 1
α
(Nµ+α)−1(u, v), respectively. By the well known Tauberian-Abe-

lian theorem, for any real numbers −1<pN < . . . < p1 <∞, the follow-
ing behaviors of the function f (t) and of its Laplace transform f̂ (α) are
equivalent

(i) f (t)=
N∑
i=1

ci t
pi +o(tpN ) near t=∞ ,

(ii) f̂ (α)=
N∑
i=1

ci�(pi +1)α−pi−1 +o(α−pN−1) near α=0+ .
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The resolvent (Nµ+α)−1 of Nµ is studied in Appendix D. It can be writ-
ten like in (70) (except for the change of sign of α) and expanded in α for
α small to all orders ≤0. It is easy to see that, for µ<∞, in the numera-
tor of (70) only the leading term is of order strictly smaller than zero and
there is exactly one term of order zero. More exactly, one obtains:

(Nµ+α)−1(u, v) = Gµ,−α(u, v)

= Cb (uv)
1
2 −b α−b

1+µα1−b

− 1
2b

min(u, v)
1
2 −b max(u, v)

1
2 +b+o(α0)

= Cb (uv)
1
2 −b ∑

0≤n≤ b
1−b

(−µ)n αn(1−b)−b

− 1
2b

min(u, v)
1
2 −b max(u, v)

1
2 +b+o(α0) .

This permits to infer the expansions

e−tNµ(u, v)=Cb(uv) 1
2 −b ∑

0≤n< b
1−b

(−µ)n
�(b−n(1−b)) t

b−n(1−b)−1 +o(t−1+ε) (51)

for any ε >0, and

Lµ(t;u, v) = Cb (uv)
1
2 −b ∑

0≤n≤ b
1−b

(−µ)n
�(1+b−n(1−b)) t

b−n(1−b)

− 1
2b

min(u, v)
1
2 −b max(u, v)

1
2 +b + o(1) . (52)

They give the large t asymptotics relevant for the study of the long time
behavior of the tracer 2-point function in the decaying and forced regime,
respectively.

5.3. Consequences for the Tracer Transport

Substituting the expansion (51) into (43) and then into (41), one
infers from (49) that the dominant terms in the free decay of the tracer
2-point function are r-independent:
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F(t, r) = (
2−ξ

2
)2b−1D̃b−1

0 Cb
∑

0≤n< b
1−b

(−µ)n
�(b−n(1−b)) t

b−n(1−b)−1

·
(∫ ∞

0
r ′ a−ξ F (0, r ′)dr′ + λ̃F(0,0)

)
+ o(t−1+ε) .

Similarly, from (52), (43), (41) and, finally, (50), we infer that in the forced
situation

F(t, r) = (
2−ξ

2
)2b−1D̃b−1

0 Cb
∑

0≤n≤ b
1−b

(−µ)n
�(1+b−n(1−b)) t

b−n(1−b)
( ∞∫

0

r ′ a−ξ χ(r ′)dr′ + λ̃ χ(0)
)

− 1

D̃0(1−a)

(
r1−a

r∫
0

r ′a−ξ χ(r ′)dr′ +
∫ ∞

r
r′1−ξ

χ(r′)dr′ + λ̃ r1−a χ(0)
)

+ o(1) . (53)

It is interesting to notice that the number of terms appearing in this
expansion is variable depending on the value of the integer part of b

1−b .
In particular if n(1−b)−b=0, i.e. b=1− 1

n+1 for some natural number n,
then there is a supplementary term of order 0 in the forced 2-point func-
tion.

For λ̃=0, the result (53) reduces to the one worked out in ref. 11. The
physics of the solutions with 0<λ̃<∞ is not very different from the one
for λ̃=0 described in Sect. 3.2 and 3.3 of ref. 11. The tracer “energy” with
density 1

2θ
2 is dissipated but, in the forced case, also building up in the

constant mode growing like tb. Non-zero λ̃ brings subleading terms in this
buildup proportional to tb−n(1−b). In the stationary state the mean tracer
energy density 〈 1

2θ
2〉 is infinite. The rate of pumping of the constant mode

∝ tb−1 goes, however, to zero. The tracer energy dissipation rate equal to
− 1

2MF(t)|r=0 approaches at long times the stationary value equal to the
injection rate 1

2χ(0) and the stationary state exhibits a direct energy cas-
cade. The tracer 2-point structure function approaches the stationary form

S2(t, r) = 2(F (t,0)−F(t, r))
−→
t→∞

2

D̃0

[ ∫
0<r ′<r ′′<r

r ′′ −aξ r ′ aξ−ξ χ(r ′)dr′ dr′′ + 1
1−aξ

λ̃ r1−aξ χ(0)
]
.

(54)

For small r the integral on the right hand side scales as r2−ξ while the
term multiplying λ̃ is proportional to r1−aξ . Since 1 − aξ < 2 − ξ , a non-
zero λ̃ has an important effect. It changes the normal small r scaling ∝
r2−ξ of the 2-point structure function occurring for λ̃= 0 to the anoma-
lous scaling proportional to the zero mode r1−aξ of M.
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Let us also briefly mention the case λ̃=∞, i.e. the one with absorb-
ing boundary condition and coalescence of trajectories that was not cov-
ered above (the limits t → ∞ and λ̃→ ∞ do not commute!). Using (48),
the transition probabilities take in this case the form

P t∞(r;dr′) = etM∞(r, r′)dr′ +
[
1−γ (b, r2−ξ

(2−ξ)2D̃0 t
)�(b)−1

]
δ(r′)dr′ ,

the same as in the strongly compressible phase, see Eq. (2.26) of ref. 11.
The coefficient of δ(r ′) is obtained simply by calculating the missing mass
of etM∞(r, r ′). For large time t , the 2-point function of the forced tracer
becomes:

F(t, r) =
(
t− 1

(2−ξ)2b(1−b)�(1+b) D̃
−b
0 t1−b r1−a + 1

(2−ξ)2(1−b) D̃
−1
0 r2−ξ

)
χ(0)

+ 1

(1−a)D̃0

(∫ r

0
r ′ 1−ξ

χ(r ′)dr′ + r1−a
∫ ∞

r
r′ a−ξ

χ(r′)dr′
)

+ o(1) .

The behavior of this solution is similar to that of the strongly compress-
ible phase analyzed in Sect. 3.4 of ref. 11 and quite different from the
one for finite λ̃. The scalar energy builds up linearly in time in the con-
stant mode in an inverse cascade process and there is no persistent dissi-
pation. At difference with the solution in the strongly compressible phase,
however, the tracer 2-point structure function does not reach a stationary
regime due to the contribution proportional to the zero mode r1−a grow-
ing in time like t1−b.

6. EXACT LIMIT OF THE STATIONARY 2-POINT TRACER

STRUCTURE FUNCTION

In the main part of the paper we have used in the calculations the
approximate forms of functions f1 and f2 instead of their exact versions.
The question arises whether such calculations reproduce the actual behav-
ior of the limiting dispersion process, up to finite renormalization of the
glue parameter λ̃. Besides, one would like to have exact expressions for
some quantities, like the mass at zero of the limiting speed measure or
the limiting stationary 2-point structure function of the tracer. It turns out
that it is indeed possible to obtain precise formulae and that the asymp-
totic behavior of the integrals that we calculated approximately differs
from the exact one by a (finite, non-zero) multiplicative renormalization.

In what follows, we shall need detailed information about functions
f1,2(r; lν, lκ ) and their ratio f2(r; lν, lκ )/f1(r; lν, lκ ) that is described in
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Appendix F. In particular we prove there the positivity for r > 0 and the
scaling properties

f1(r; lν) = lξν f1(
r

lν
;1) , f2(r; lν) = lξ−1

ν f1(
r

lν
;1) (55)

of functions f1,2(r; lν) ≡ f1,2(r; lν,0). We also establish two decomposi-
tions. The first one:

f1(ρ;1)= C̃0 ρ
2f

♣
1 (ρ)= C̃0 ρ

2 +ρ4f
♠
1 (ρ) (56)

f2(ρ;1)=a2 C̃0 ρf
♣
2 (ρ)=a2 C̃0 ρ+ρ3f

♠
2 (ρ) (57)

with lim
ρ→0

f
♣
1,2(ρ)=1 will be used for small ρ. The second one:

f1(ρ;1)=ρξf♦
1 (ρ)=ρξ +ρξ−2f

♥
1 (ρ) (58)

f2(ρ;1)=aξ ρξ−1f
♦
2 (ρ)=aξ ρξ−1 +ρξ−3f

♥
2 (ρ) (59)

with lim
ρ→∞ f

♦
i (ρ)=1 will be employed for large ρ. The coefficients a2 and

aξ are given by (18). The above decompositions are used in Appendix F
to establish bounds (83) to (85) on the ratio f2(r; lν, lκ )/f1(r; lν, lκ ). Given
such bounds, it is immediate to see that there exists a constant B ′ such
that, for any r > 0 and any 0< lκ < lν < 1, the density s(r) of the natu-
ral scale measure given by (22) is comprised between 1/B ′ times and B ′
times the approximate expressions listed in Table III. Using additionally
estimates (81) to (82) from Appendix F, one infers that the same statement
holds for the density m(r)= [f1(r)s(r)]−1 of the speed measure. It is now
easy to show the convergence of s(r) and m(r) to s0(r) and m0(r) given
by (24) and (30) for r >0. Controlling what happens around r=0 will be
the main difficulty.

After the above preparation, we pass to the main topic of this section:
the proof of convergence, when lν, lκ → 0, of the stationary 2-point struc-
ture function of the forced passively advected tracer. We shall show that,
under the condition (29) with λ<∞, the limit exists and corresponds to
the structure function computed directly at lν, lκ =0 with the sticky bound-
ary condition at zero, see (54). Besides, we shall establish a precise relation
between λ and the glue parameter λ̃ of the boundary condition (37).

For lν, lκ positive, the stationary 2-point structure function is the
unique solution vanishing at zero together with its first derivative of the
equation Mν,κS2 =2χ . It is given by the relation:

S2(r) = 2

D̃0

∫ r

0
s(r ′′)dr′′

∫ r′′

0
m(r′) χ(r′)dr′ = 2

D̃0

∫
0<r′<r′′<r

s(r′′)m(r′) χ(r′)dr′ dr′′ .
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The last integral may be cut up into six pieces according to the posi-
tions of r ′, r ′′ with respect to lκ , lν . The bounds given for s(r) and m(r)

indicate that in each domain the dominant behavior of the contribution
to S2(r) is estimated correctly by using the rough forms in Table III, up
to multiplication by a constant bounded independently of lκ , lν and r. We
get the following behaviors. The domain lν < r

′< r ′′ gives a contribution
behaving at lowest order like r2−ξ for small r and like r1−aξ for large r.
Domains lκ < r ′ < lν < r ′′ and r ′ < lκ < lν < r ′′ both give terms of order
l
2−ξ+aξ−a2
ν l

a2−1
κ r1−aξ . Finally the contribution from domains r ′′<r ′<lν is

always subdominant compared to the former ones. This suggests that the
limiting value of S2(r; lν, lκ ) will depend on the limit of l

2−ξ+aξ−a2
ν l

a2−1
κ as

lν, lκ go to zero. The only task left is to calculate the limit of S2(r; lν, lκ )
for l

2−ξ+aξ−a2
ν l

a2−1
κ →λ with λ<∞.

We already know that the domains with 0<r ′′<r ′<lν will give van-
ishing contributions (supposing that the others give a finite one). Let us
turn to the other three. The easiest to handle is lν < r ′′< r ′< r. Because
of the bounds on s(r) and m(r) we can immediately use the Dominated
Convergence Theorem to obtain

lim
lν ,lκ→0

∫
lν<r ′<r ′′<r

s(r ′′; lν, lκ )m(r ′; lν, lκ ) χ(r ′)dr′ dr′′

=
∫

0<r ′<r ′′<r

s(r ′′;0,0)m(r ′;0,0) χ(r ′)dr′ dr′′

=
∫

0<r ′<r ′′<r

r ′′ −aξ r ′ aξ−ξ χ(r ′)dr′ dr′′ .

Finally we turn to the two remaining domains covering the region
0<r ′<lν <r ′′<r. The corresponding integral factorizes:

∫
0<r ′<lν<r ′′<r

s(r ′′; lν, lκ )m(r ′; lν, lκ ) χ(r ′)dr′ dr′′

=
[∫ r

lν

s(r ′′; lν, lκ )dr′′
][∫ lν

0
m(r ′; lν, lκ ) χ(r ′)dr′

]
.

To the first factor, one may again apply the Dominated Convergence
Theorem to obtain
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lim
lν ,lκ→0

∫ r

lν

s(r ′′; lν, lκ )dr′′

=
∫ r

0
s(r ′′;0,0)dr′′ =

∫ r

0

( r0

r′′
)aξ

dr′′ = 1
1−aξ

r
aξ
0 r1−aξ .

Control of the second factor, that converges to the mass at zero of the lim-
iting speed measure multiplied by χ(0), is the crucial element of the argu-
ment and it requires technical work. We postpone it to Appendix G. We
prove there that for λ<∞,

lim
lν ,lκ

λ→0

∫ lν

0
m(r ′; lν, lκ ) χ(r ′)dr′ = r

−aξ
0 Yλχ(0) (60)

with

Y = 1
4

(
1
2
C̃0

)− a2+1
2
B(

d

2
,

1−a2
2
)

· exp


−

∫ 1

0

ρ
[
f

♠
2 (ρ)−a2f

♠
1 (ρ)

]
C̃0f

♣
1 (ρ)

dρ−
∫ ∞

1

f♥
2 (ρ)−aξ f♥

1 (ρ)

ρ3f♦
1 (ρ)

dρ


 (61)

where lν, lκ
λ→0 denotes the limit lν, lκ → 0 under condition (29) and

B(x, y) is the Euler Beta function. The constant Y is positive. The mass at
zero of the limiting speed measure is then equal to r

−aξ
0 Y λ which should

be contrasted with the approximate formula (31). Given the above result,
the contribution of the region 0<r ′<lν <r ′′<r to S2(r) becomes

2Y

D̃0(1−aξ )
λ r1−aξ χ(0) .

The final outcome is the relation:

lim
lν ,lκ

λ→0

S2(r) = 2

D̃0

( ∫
0<r ′<r ′′<r

r ′′ −aξ r ′ aξ−ξ χ(r ′)dr′ dr′′ + Y
1−aξ

λ r1−aξ χ(0)
)

which agrees with expression (54) of Section 5.3 if we put λ̃= Yλ. This
means that the structure function obtained in the lν, lκ

λ→0 limit coincides
with the one that is obtained directly using the sticky process with the gen-
erator Mλ̃ for the value

λ̃=Yλ (62)
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of the glue parameter. Note that the effect of using the exact versions of
f1, f2 instead of the approximate versions of table Table II manifests itself
only in the change of the proportionality constant between λ and the glue
parameter λ̃, i.e. in a finite multiplicative renormalization of λ̃.

In view of all that has been said, it is natural to expect that the entire
Lagrangian pair dispersion process behaves in the lν, lκ

λ→0 limit as the
diffusion process with the generator Mλ̃ for the glue parameter λ̃ given by
(62). In particular, such a process is equivalent in the coordinate (19) to
the Bessel process of parameter −bξ,℘ with a sticky behavior at zero.

7. CONCLUSIONS

We have analyzed in this article the small viscosity, small diffusiv-
ity behavior of the Lagrangian dispersion in the Kraichnan model with
intermediate compressibility degree d−2

2ξ + 1
2 <℘<

d

ξ2 . In this interval, the
Lagrangian trajectories may separate fast due to the spatial roughness of
velocities but may also come close due to the trapping effects of com-
pressibility. As first suggested in refs. 5 and 6, we have discovered differ-
ent possible asymptotic regimes of the Lagrangian flow, depending on the
limiting behavior of the Prandtl number when the viscous and diffusive
cut-off scales lν and lκ are taken to zero. This arbitrariness reflects the
frustration of the particles unable to choose between opposite trends of
life. Specifically, we have argued that there are different limits of the dis-
persion process depending on the behavior of the combination

l
aξ+2−ξ−a2
ν la2−1

κ = const. l
aξ+1−ξ
ν (Pr)

1−aξ
2

of the cutoff scales. If this combination goes to zero when lν and lκ are
sent to zero, the resulting dispersion process is that of trajectories instan-
taneously reflecting off each other upon hitting. If it goes to infinity, the
trajectories coalesce when they meet, behaving similarly as in the strongly
compressible regime. Finally, if the above combination goes to a finite
limit λ when lν, lκ → 0 (which sends to infinity the Prandtl number at a
specific pace) then the resulting dispersion process exhibits the sticky or
slowly reflecting behavior with λ proportional to the amount of “glue”
keeping the particles together. Such a behavior leaves a visible imprint
on the passive advection of tracers in the subleading contributions to the
tracer energy condensation in the zero wave number and, even more dra-
matically, by generating anomalous scaling of the stationary 2-point struc-
ture function of the tracer. The analysis in the main part of the paper
was based on approximate calculations of the asymptotic behavior of the
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natural scale and speed measure of the Lagrangian dispersion process and
of the eigenfunctions of its generator. To set the results on a firmer ground
we have also shown rigorously that the finite lν, lκ stationary 2-point struc-
ture function of the tracer converges, under the limit lν, lκ →0 with finite
λ, to the stationary structure function obtained directly from the sticky
dispersion process. This argument allowed to fix exactly the proportional-
ity constant between λ and the value of the glue parameter. Undoubtedly,
with a little more work controlling the convergence of resolvents of Mν,κ

to that of Mλ̃ one should be able to prove, along the lines of ref. 9 that
the laws of the dispersion processes for positive lν, lκ converge to the law
of the sticky process.

The main open problem, untouched by our analysis, is the con-
struction of N -particle processes corresponding to the sticky behavior of
the two-particle dispersion. In particular it would be interesting to know
whether the amount of two-particle glue is the only parameter that labels
possible Lagrangian flows in the moderately compressible phase of the
Kraichnan model. The Dirichlet form approach used in ref. 18 in the
1-dimensional ξ=0 case to tackle such questions is unavailable in the other
instances, at least in its classical form, due to the lack of symmetry of the
generators of the N -particle processes. Further open questions of funda-
mental importance concern possible occurrence of sticky Lagrangian flows
in more realistic velocity ensembles exhibiting fully developed turbulence.

APPENDIX A. BRIEFLY ON ONE-DIMENSIONAL DIFFUSION

PROCESSES

We collect here some facts, used in the main text, about one-dimen-
sional diffusion processes. The reader may wish to consult the relevant lit-
erature (e.g. refs. 3 and 22) for an extensive treatment.

Let X(t) be a stochastic diffusion process on R+. The Kolmogorov
backwards evolution operator P t of the process, acting on bounded con-
tinuous functions f defined on R+, is given by

(P tf )(r) = Erf (X(t)) =
∫
f (r ′)P t (r,dr′)

where we define Erf (X(t))≡E(f (X(t)) |X(0)= r). The measures P t(r,dr′)
giving the kernels of operators P t are the transition probabilities of the
process. The family (P t )t∈R+ forms a one-parameter semigroup whose gen-
erator ∂tP t |t=0 we shall denote by M. In general M is a second order dif-
ferential operator. The transition probabilities verify the PDE

∂tP
t (r,dr′)=M(r)Pt(r,dr′) .
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Any regular diffusion process may be derived from Brownian motion
by an adequate change of variables defined in terms of the natural scale
and the speed measure associated to the process. The natural scale is
defined as the unique, up to affine transformations, continuous strictly
increasing function S such that S(X(t)), i.e. X(t) considered in the new
spatial coordinate S, is a martingale. S is called the natural scale and
s(r)= dS(r)

dr the density of the natural scale measure with respect to the
coordinate r on R+.

If the range of S is the whole real line then the process S(X(t)), for
X(0) fixed, has the same distribution as an appropriately time-changed
Brownian motion starting from S(X(0)). This means that if W is a Brown-
ian motion starting from S(X(0)), then S(X(t)) has the same law as
W(τ(t)) for some function τ(t)= τ(t;W) which depends also on the real-
ization of the Brownian path. Let us denote by L(τ, S;W) the local
time of the Brownian path W at the point S up to instant τ . Formally,
L(τ, S;W)= ∫ τ0 δ(S−W(σ))dσ . The speed measure of the process X(t) is
defined as the unique positive measure dm(S) on R such that the relation
between t and τ may be written as

τ(t;W)= inf
{
σ :
∫
L(σ,S;W)dm(S)> t

}

or, equivalently,

t (τ ;W)=
∫
L(τ, S;W)dm(S) .

Intuitively, the speed measure expresses how much time the (time-changed)
Brownian motion needs to advance “one step” at a given point in space.
The larger the (density of the) speed measure at some point, the slower
the (time-changed) Brownian motion advances.

The generator M of the Kolmogorov backward evolution semigroup
may be written in terms of the densities m(S)= dm(S)

dS or m(r)= dm(r)
dr and

s(r) as

M = 1
2m(S)

∂2
S = 1

2m(r)
∂r ◦ 1

s(r)
∂r .

Similarly, if the range of S is a positive half-line, which may be cho-
sen as R+, then analogous statements hold with the Brownian motion
W replaced by the Brownian motion reflecting at zero, i.e. by |W(t)|. In
any case, the behavior of the process at the boundary point r=0 may be
classified according to Feller’s criteria expressible in terms of the natural
scale and the speed measure. When r=0 is a regular boundary point, the
behavior of the process at this point depends on the mass m({0}) w.r.t the
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speed measure and is reflected in the boundary condition for the genera-
tor M.

Finally let us recall from ref. 13 the following formula for hitting
probabilities of some process Xt . Denote by Hr ′ the hitting time of the
process at some point r ′. Then for α>0

Er (e
−αHr′ )= φ(r)

φ(r ′)
(63)

where φ is the solution of (M−α)φ=0 that verifies the correct boundary
condition either on the left (i.e. at 0 if the process is defined on the half-
line) if r <r ′ or on the right (i.e. at infinity if the process is defined on the
half-line) if r >r ′.

APPENDIX B. A PATHOLOGICAL CASE OF CONVERGENCE

Let L be an arbitrary length and l a small scale that we shall send to
zero. A diffusion process may be specified by giving its natural scale and
its speed measure. Consider such a process on R+ whose natural scale is

S(r)=
{
l−L+ L

l
r for r ∈ [0, l] ,

r for r ∈ [l,∞)

so that the density of the natural scale measure w.r.t. r is

s(r)=
{
L
l

for r ∈ [0, l] ,
1 for r ∈ [l,∞) .

Let us take for (the density w.r.t. r of) the speed measure

m(r)=
{
L
l

for r ∈ [0, l] ,
1 for r ∈ [l,∞) .

We see that taking the limit l→0 for r >0 we get s0(r)=1 corresponding
to S0(r)= r, however lim

l→0
S(0)= −L. This is not very different from the

case studied in Section 3, where S(0)=−∞ as long as there is finite reg-
ularization. For the limit of the speed measure we get m0(r)=Lδ(r)+1.

Let us now pass to the natural scale first. Then m(S)= m(r)
s(r)

=1 for all
S. Thus m0(S)=1. This is of course incompatible with the previous result.
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The explanation of this phenomenon is the following. To the right
of l the process is just Brownian motion. To the left of l it is Brownian
motion on a segment of length L (with reflecting left end) “squeezed” into
the segment [0, l]. Thus when we take l to zero, the limiting process will be
a Brownian motion on R+ which “sees” an additional segment of length
L to its left. This is of course a non-Markovian boundary condition.

APPENDIX C. ASYMPTOTIC BEHAVIOR OF EIGENFUNCTIONS

Starting from formula (34) we calculate the limit of c+E/c
−
E when

lκ , lν → 0. We assume that lκ < lν , but not necessarily lκ � lν . The calcu-
lation can be done in the usual way by expanding c+E/c

−
E in a multivariate

power series. First we expand every term in (34) to the minimal orders in
lν, lκ . That is, we expand the expressions into a power series (and possibly
powers of logarithms) in lν, lκ and keep all the terms such that there is no
term of smaller order simultaneously in lν and in lκ .

We list below the expansion to minimal orders in lκ , lν of all terms
appearing in (34):

g−
1 (lκ )∼1 g−

1
′
(lκ )∼−E

d
l2−ξ
ν l−1

κ

γ− ∼ E

1−a2
l2−ξ
ν γ+ ∼1−a2

g−
2 (lκ )= (lκ )γ

−
g−

2
′
(lκ )=γ−(lκ )γ

−−1∼ E

1−a2
l2−ξ
ν l−1

κ (lκ )
γ−

g+
2 (lκ )= (lκ )γ

+ ∼ l1−a2
κ g+

2
′
(lκ )=γ+(lκ )γ

+−1 ∼ (1−a2)l
−a2
κ

g−
2 (lν)= (lν)γ

− ∼ e
E

1−a2
l
2−ξ
ν ln lν ∼1 g−

2
′
(lν)=γ−(lν)γ

−−1 ∼ E

1−a2
l1−ξ
ν

g+
2 (lν)= (lν)γ

+ ∼ l1−a2
ν g+

2
′
(lν)=γ+(lν)γ

+−1 ∼ (1−a2)l
−a2
ν

g−
3 (lν)∼1 g−

3
′
(lν)∼− (2− ξ)2E

4(1− ξ +aξ ) l
1−ξ
ν

g+
3 (lν)∼ l

1−aξ
ν g+

3
′
(lν)∼ (1−aξ )l−aξν

Note that (lκ )
γ−

cannot be further expanded without any additional
hypothesis on the relative behaviors of lν and lκ because both the base and
the exponent go to zero and one depends on lκ the other on lν . All we can
say is that lεκ =o((lκ )γ−

) for any ε>0, and (lκ )γ
−
<1 when lκ <1. We shall

keep (lκ )
γ−

as it is in the expansions.
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Calculations to minimal order with expansions into multivariate
power series are a little trickier then with univariate expansions. Even if
the coefficients of some but not all monomials in the expansion simplify
to zero at intermediate stages then possibly higher order terms should
be taken into account because they could give rise to terms of minimal
order.6 This precaution is implicit in the computations. However, as long
as there is only one term of minimal order (and it does not simplify out),
no special care is needed.

After having determined above the behavior of each term, we may
now calculate the sub-products of (34) to minimal order. First evaluate

(
g−

3
′
(lν) −g−

3 (lν)

−g+
3

′
(lν) g+

3 (lν)

)(
g+

2 (lν) g
−
2 (lν)

g+
2

′
(lν) g

−
2

′
(lν)

)

∼
(

−(1−a2) l
−a2
ν −

[
(2−ξ)2

4(1−ξ+aξ ) +
1

1−a2

]
E l

1−ξ
ν

(aξ −a2) l
1−a2−aξ
ν −(1−aξ ) l−aξν

)
.

It is straightforward to check that every coefficient is different from zero,
except for aξ −a2 which may be equal to zero. So there the expansion has
to be pushed further, but since each following term is of higher order both
in lν and in lκ , we may simply replace (aξ − a2) l

1−a2−aξ
ν by O(l

1−a2−aξ
ν ).

Next evaluate(
g−

2
′
(lκ ) −g−

2 (lκ )

−g+
2

′
(lκ ) g+

2 (lκ )

)(
g−

1 (lκ )

g−
1

′
(lκ )

)
∼
([

1
1−a2

+ 1
d

]
E l

2−ξ
ν l−1

κ (lκ )
γ−

−(1−a2) l
−a2
κ

)
.

Again, it is straightforward to check that every coefficient is different from
zero. We may multiply together (exactly) the preceding two subexpressions
to arrive at

(
c+E
c−E

)
∝∼


− d+1−a2

d
E l

2−ξ−a2
ν l−1

κ (lκ )
γ− +

[
1+ (2−ξ)2(1−a2)

4(1−ξ+aξ )
]
E l

1−ξ
ν l

−a2
κ

O
(
l
3−a2−aξ−ξ
ν l−1

κ (lκ )
γ−)+ (1−a2)(1−aξ ) l−aξν l

−a2
κ


 .

(64)

Now all the terms are of minimal order. Additionally, we have

l
3−a2−aξ−ξ
ν l−1

κ (lκ )
γ− = l1−aξ

ν (l2−ξ−a2
ν l−1

κ (lκ )
γ−
)=o(l2−ξ−a2

ν l−1
κ (lκ )

γ−
) , (65)

6Take for example the sum of two polynomials (X+XY +Y 2)+ (−X+Y 2). The sum of the
minimal order expansions is (X+ Y 2)+ (−X+ Y 2)= 2Y 2 but the minimal order expansion
of the sum is of course XY +2Y 2.
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l1−ξ
ν l−a2

κ = laξ+1−ξ
ν (l

−aξ
ν l−a2

κ )=o(l−aξν l−a2
κ ) . (66)

Let us first suppose that l2−ξ−a2
ν l−1

κ (lκ )
γ− = o(l

−aξ
ν l

−a2
κ ). In this case

c+E/c
−
E goes to zero. This is so even if in (64) the expansion for c+E can-

cels out, meaning that the expansion should be pushed further. Indeed,
subsequent terms in the expansion are of higher order thus asymptotically
smaller. On the other hand, there can be no cancellation in the expansion
of c−E because (65) and the hypothesis of the present paragraph combine

to l
3−a2−aξ−ξ
ν l−1

κ (lκ )
γ− =o(l−aξν l

−a2
κ ).

Conversely, if we suppose l
−aξ
ν l

−a2
κ = o(l2−ξ−a2

ν l−1
κ (lκ )

γ−
), then c+E/c

−
E

goes to ∞. This even if in (64) the expansion for c−E cancels out, mean-
ing that the expansion should be pushed further. Once again, subsequent
terms in the development are of higher order thus asymptotically smaller.
And now it is in the development of c+E that there can be no cancella-
tion because (66) and the hypothesis of the present paragraph combine to
l
1−ξ
ν l

−a2
κ =o(l2−ξ−a2

ν l−1
κ (lκ )

γ−
).

In consequence, if c+E/c
−
E should have a finite non-zero limit, then

l
2−ξ−a2
ν l−1

κ (lκ )
γ−

and l
−aξ
ν l

−a2
κ must be of the same order. In particu-

lar they are much bigger than the other two terms so there are no
cancellations in (64). Also it is easy to see that in this case lκ can-
not decrease faster than some power of lν . If we write l

−aξ
ν l

−a2
κ =

O(l
2−ξ−a2
ν l−1

κ (lκ )
γ−
) then, using (lκ )γ

− =O(1), we have l
2−ξ−a2+aξ

1−a2
ν =O(lκ).

This implies (lκ )γ
− ∼1. We may then conclude that

c+E
c−E

∼− d+1−a2

(1−a2)(1−aξ )d E l
2−ξ−a2+aξ
ν la2−1

κ .

This expression has a finite limit if and only if l
2−ξ−a2+aξ
ν l

a2−1
κ goes to

some finite limit λ, just as in (29). We obtain this way formula (35). In
fact our proof shows that (35) is valid also if λ is zero or infinite.

APPENDIX D. SPECTRAL ANALYSIS OF Nµ

The (operator valued) spectral measure for the operator Nµ may be
evaluated with the help of the formula

Eµ(B)= 1
2πi

lim
ε→0

∫
B

[Gµ,α+iε −Gµ,α−iε ] dα
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where Gµ,α is the resolvent

Gµ,α ≡ (Nµ−α)−1

and B is a (Borel) subset of R. The kernel Gµ,α(u, v) of Gµ,α is deter-
mined by demanding that for each v ∈ R+, as a function of u∈ R+, it is
in the domain of Nµ and that it satisfies the equation

(N(u)−α)Gµ,α(u, v)= δ(u−v) . (67)

To calculate Gµ,α(u, v) we note that for u 
= v we simply have (N(u)−
α)Gµ,α(u, v)=0. Viewed as a function of u, Gµ,α(u, v) verifies at zero the
boundary condition (42) and should go to zero at infinity. A solution of
(Nµ−α)φ(u)=0 satisfying the correct boundary condition at zero is

φµ,α(u)=u 1
2

[
I−b(

√−α u)+µ(−α)1−bIb(
√−α u)

]
, α /∈R+ . (68)

Here I±b is the modified Bessel function of parameter ±b. The square-
root is taken with its principal definition. Similarly, the solution of (N −
α)ψ(u)=0 decaying at infinity is

ψα(u)=u1/2Kb(
√−αu) , α /∈R+ (69)

where Kb is the modified Bessel function of the second kind of parameter
b. With the correct matching at u= v to assure that (67) is satisfied, we
obtain

Gµ,α(u, v)=


φµ,α(u)ψα(v)

wµ,α
if u�v ,

ψα(u)φµ,α(v)

wµ,α
if u�v

(70)

where wµ,α is the Wronskian of φµ,α and ψα, i.e.

wµ,α ≡φ′
µ,α(z)ψα(z)−φµ,α(z)ψ ′

α(z)

which is independent of z. To evaluate the Wronskian, we may use the
asymptotic expansions for z→+∞

Iν(z)= ez√
2πz

(1+O(1
z
)) , Kν(z)=

√
π

2z
e−z(1+O(1

z
)) ,
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see Eq. 8.451.6,7 of ref. 12. The result is

wµ,α =1+µ(−α)1−b .

Next we have to calculate the discontinuity in Gµ,α(u, v) along the cut
for α∈R+. It will be convenient to write −(α± i0)=e∓πiα. This will auto-
matically give the correct determination of every function. For u<v

Gµ,α±i0(u, v) = 1
1+µα1−be∓πi(1−b)

u1/2
[
I−b(e∓

πi
2
√
αu)+µe∓πi(1−b)α1−bIb(e∓

πi
2
√
αu)
]

v1/2Kb(e
∓ πi

2
√
αv) .

Now we employ the general formula

Kν(z)= π

2
I−ν(z)− Iν(z)

sin νπ
for ν /∈Z ,

see Eq. 8.485 of ref. 12, to get

Gµ,α±i0(u, v) = 1
1+µα1−be∓πi(1−b)

u1/2
[
I−b(e∓

πi
2
√
αu)+µe∓πi(1−b)α1−bIb(e∓

πi
2
√
αu)
]

v1/2 π

2 sin bπ

[
I−b(e∓

πi
2
√
αv)− Ib(e∓ πi

2
√
αv)
]
.

The relations

Iν(e
πi
2 z)= e πi2 νJν(z) , Iν(e

− πi
2 z)= e− πi

2 νJν(z)

following from Eqs.,8.406.1 and 8.476.1 of ref. 12 permit to move the
determination from the function argument to a multiplicative coefficient.
The final expression is

Gµ,α±i0(u, v) = π

2 sin bπ
1

1+µα1−be∓πi(1−b)

· u1/2
[
e∓

πi
2 bJ−b(

√
αu)+µe∓πi(1−b)α1−be∓

πi
2 bJb(

√
αu)
]

· v1/2
[
e∓

πi
2 bJ−b(

√
αv)− e∓ πi

2 bJb(
√
αv)
]
.



Sticky Behavior of Fluid Particles in the Compressible Kraichnan Model 1291

It is now easy to calculate the discontinuity Gµ,α+i0 −Gµ,α−i0 and to get
for α=E ∈R+

dEµ(u, v) = dE
2(1−2µE1−b cosbπ +µ2E2(1−b))

ϕµ,E(u)ϕµ,E(v) (71)

where ϕµ,E(u) given by (44) is the (generalized) eigenfunction of Nµ asso-
ciated with the eigenvalue E. This corresponds to the scalar spectral mea-
sure (45).

APPENDIX E. CONSERVATION OF PROBABILITY

We shall show here that the transition measures P t
λ̃
(r;dr′) of the

sticky process given by (41) are normalized, i.e. that
∫
P t
λ̃
(r,dr′)= 1. This

is clearly the case for t=0 since P 0
λ̃
(r;dr′)= δ(r − r′)dr′. But

d
dt

∫
etMλ̃(r, r ′)dr′ =

∫
M†(r ′) etMλ̃(r, r ′)dr′

= −F(r ′)
[
etMλ̃(r, r ′)m(r ′)−1

]
r ′=0

where M† =m(r)M ◦m(r)−1 = ∂r ◦F ◦m(r)−1 with m(r)= raξ−ξ and F =
D̃0r

aξ ∂r is the formal adjoint of M w.r.t. the L2(dr) scalar product. The
expression on the right hand side has the interpretation of the flux of the
probability current through r ′ = 0. It should be balanced by the rate of
change of probability to stay at r ′ =0. Using the relations

etMλ̃(r, r ′)m(r ′)−1 = etMλ̃(r ′, r)m(r)−1

and the fact that etMλ̃(r, r ′) satisfies as a function of r the boundary con-
dition (37), we infer that

d
dt

∫
etMλ̃(r, r ′)dr′ =−λ̃M(r ′) etMλ̃(r ′, r)m(r)−1

∣∣∣
r ′=0

=−λ̃M(r ′)
(
etMλ̃(r, r ′)m(r ′)−1

)∣∣∣
r ′=0

=−λ̃m(r ′)−1M†(r ′) etMλ̃(r, r ′)
∣∣∣
r ′=0

=−λ̃ d
dt
m(r ′)−1 etMλ̃(r, r ′)

∣∣∣
r ′=0

.

It follows then from (41) that the time derivative of
∫
P t
λ̃
(r;dr′) vanishes

so that the normalization of P t
λ̃
(r;dr′) does not change in time.
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APPENDIX F. ESTIMATES OF FUNCTIONS f 1 and f 2

We present bounds showing in which sense the approximations given
for functions f1 and f2/f1 in Table II are correct.

The functions f1,2(r; lν, lκ ) were defined by (14) and (15) with κ

given by (28). Let us examine their behavior for κ=0 setting f1,2(r; lν)≡
f1,2(r; lν,0). Let us first show that f1,2(r; lν) are positive for r > 0. Note
that (6) implies that

dij (�r; lν) = D0

∫
2 sin2 �k.�r

2

|�k|d+ξ Pij (�k,℘)f (lν |�k|) d�k
(2π)d

= D̃0

∫
Tij (�k)d�k

where T (�k) is a positive (�r-dependent) matrix. On the other hand, (14) and
(15) may be written as

f1(r) =
∫
Tij (�k) rirj

r2
d�k , f2(r) = r−1

∫
Tij(�k) (δij −

rirj

r2
)d�k

for any vector �r such that |�r|= r. Positivity of T implies

Tij (�k) rirj �0 , Tij (�k)(δij − ri rj

r2 )�0

and for r > 0 it is not hard to see that strict equalities hold except for a
set of �k of measure zero. Hence positivity of f1,2(r; lν).

In order to study the behavior of f1,2(r; lν) for small and large r it
will be convenient to express them in terms of the function

g(r; lν) =
∫

1− ei�k·�r
|�k|d+ξ f (lν |�k|) d�k

(2π)d
.

Note that g is a smooth even function (i.e. all its derivatives of odd order
vanish at 0) of r�0. By scaling,

g(r; lν) = lξν g(
r

lν
;1) .

Around zero

g(ρ;1)=C0ρ
2 + O(ρ4) with C0 =

∫
f (|�k|)

|�k|d+ξ−2

d�k
(2π)d

. (72)
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Rewriting

g(ρ;1) = ρξ
∫

1− ei�k· �ρ/ρ
|�k|d+ξ f (|�k|/ρ) d�k

(2π)d
,

we infer that around infinity

g(ρ;1) = C∞ρξ + O(ρξ−2) (73)

with

C∞ =
∫

1− ei�k· �ρ/ρ
|�k|d+ξ

d�k
(2π)d

= �(
2−ξ

2 )

2d+ξ−2π
d
2 ξ �(

d+ξ
2 )

.

The spatial covariance ��d(�r; lν) given by (6) may be expressed in terms of
the function g:

dij (�r; lν) = D0

[(1−℘
d−1

δij + ℘d−1
d−1

rirj

r2

)
g(r; lν)

+ ℘d−1
d−1

(
δij −d rirj

r2

)
r−d

r∫
0

(r ′)d−1g(r ′; lν)dr′
]
. (74)

Indeed, by rotational covariance, dij has to be a combination of δij and
ri rj

r2 . To show that the coefficient functions are correctly represented above,
it is enough to note that dii and ∂idij are, in virtue of (6), expressible in
terms of g and of its r-derivative g′ as dii =D0g and ∂idij =D0℘

rj
r
g′ and

that the same relations may be recovered from (74). Now using definitions
(14) and (15) we obtain:

D̃0
D0
f1(r; lν) = 1−℘

d−1
g(r; lν) + ℘d−1

d−1

(
g(r; lν)− d−1

rd

∫ r

0
r ′ d−1

g(r ′; lν)dr′
)
,

(75)

D̃0
D0
f2(r; lν) = 1−℘

r
g(r; lν) + ℘d−1

rd

∫ r

0
r ′ d−1

g(r ′; lν)dr′ . (76)

Functions f1,2(r; lν) inherit from g(r; lν) the scaling property (55). Rela-
tions (75), (76) and expansions (72) and (73) permit now to write the
decompositions (56) to (59) with C̃0 = 1+2℘

d+2 C0D0/D̃0 and similar coeffi-
cient in (58) and (59) fixed to 1 by setting D̃0 = 1+℘ξ

d+ξ C∞D0. Moreover
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the positivity of functions f1,2(r;1) and their smoothness imply that there
exists some constant B>0 such that for all 0≤ρ≤1

1
B
<f

♣
i (ρ)<B i=1,2 , (77)

−B<f♠
i (ρ)<B i=1,2 (78)

and for all 1≤ρ <∞,

1
B
<f

♦
i (ρ)<B i=1,2 , (79)

−B<f♥
i (ρ)<B i=1,2 . (80)

Let us come back to functions f1,2(r; lν, lκ ) with 0 < lκ, lν < 1. To
obtain bounds for f1, we write for lν <r

f1(r; lν, lκ )= rξf♦
1 (

r

lν
)+2lξ−2

ν l2κ

and infer that

rξ
1
B
<f1(r; lν, lκ )<rξ (B+2) . (81)

Similarly, the decomposition

f1(r; lν, lκ )= C̃0 l
ξ−2
ν r2f

♣
1 (

r

lν
)+2lξ−2

ν l2κ

gives for lκ <r < lν the bounds

lξ−2
ν r2 C̃0

B
<f1(r; lν, lκ )< lξ−2

ν r2(C̃0B+2)

and for r < lκ ,

2lξ−2
ν l2κ <f1(r; lν, lκ )< lξ−2

ν l2κ(C̃0B+2) . (82)

This shows that f1(r; lν, lκ ) is bounded above and below by its approxi-
mate version of Table II multiplied or divided by a constant.
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Function f2 may be estimated similarly resulting in O(1) bounds for
rf2/f1. We need however (in particular in Appendix G) the following more
precise estimates for that ratio:

for lν <r :

∣∣∣∣f2(r; lν, lκ )
f1(r; lν, lκ )

− aξ

r

∣∣∣∣ < C
l
ξ
ν

r1+ξ (83)

for lκ <r < lν :

∣∣∣∣f2(r; lν, lκ )
f1(r; lν, lκ )

− a2

r

∣∣∣∣ < C

[
r

l2ν
+ l2κ

r3

]
(84)

for r < lκ :

∣∣∣∣f2(r; lν, lκ )
f1(r; lν, lκ )

− d−1
r

∣∣∣∣ < C
r

l2κ
(85)

for some constant C which may be chosen independent of r, lν, lκ . To
establish (83) we use the decompositions (58) and (59) to write for lν <r∣∣∣∣f2(r; lν, lκ )

f1(r; lν, lκ )
− aξ

r

∣∣∣∣
=
∣∣∣∣∣∣
l
ξ−1
ν f2(

r
lν

;1)+2 d−1
r
l
ξ−2
ν l2κ − aξ

r

[
l
ξ
ν f1(

r
lν

;1)+2lξ−2
ν l2κ

]
l
ξ
ν f1(

r
lν

;1)+2lξ−2
ν l2κ

∣∣∣∣∣∣
=
∣∣∣∣∣∣
l2ν r

ξ−3
[
f

♥
2 (

r
lν
)−aξf♥

1 (
r
lν
)
]
+2 d−1−aξ

r
l
ξ−2
ν l2κ

rξ f
♦
1 (

r
lν
)+2lξ−2

ν l2κ

∣∣∣∣∣∣
<
B[1+|aξ |]+2|d−1−aξ |

1
B

l
ξ
ν

r1+ξ

where the inequality follows from the bounds (79) and (80). In the same
manner for lκ <r <lν , using the decompositions (56), (57) and the bounds
(77) and (78), we obtain

∣∣∣∣f2(r; lν, lκ )
f1(r; lν, lκ )

− a2

r

∣∣∣∣=
∣∣∣∣∣∣
l
ξ−4
ν r3

[
f

♠
2 (

r
lν
)−a2f

♠
1 (

r
lν
)
]
+2 d−1−a2

r
l
ξ−2
ν l2κ

C̃0l
ξ−2
ν r2f

♣
1 (

r
lν
)+2lξ−2

ν l2κ

∣∣∣∣∣∣
<

[
r

l2ν
+ l2κ

r3

]
B[1+|a2|]+2|d−1−a2|

C̃0
B

.

Finally for r < lκ ,

∣∣∣∣f2(r; lν, lκ )
f1(r; lν, lκ )

− d−1
r

∣∣∣∣
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=
∣∣∣∣∣∣
C̃0(a2 −d+1)lξ−2

ν r+ lξ−4
ν r3

[
f

♠
2 (

r
lν
)− (d−1)f♠

1 (
r
lν
)
]

C̃0l
ξ−2
ν r2f

♣
1 (

r
lν
)+2lξ−2

ν l2κ

∣∣∣∣∣∣
<
r

l2κ

C̃0|d−1−a2|+B[1+|d−1|]
2

.

Let us end this Appendix by listing the scaling forms of the tensor ��d
and of functions f1,2. Since g(r;0)=C∞ rξ , we infer from (74) that

dij (�r,0) = D̃0

d−1

[( d+ ξ
1+ ξ℘ −1

)
δij + ξ(℘d−1)

1+ ξ℘
rirj

r2

]
rξ

and that f1(r;0)= rξ and f2(r;0)=aξ rξ−1, in agreement with the scaling
form (17) of the generator M.

APPENDIX G. EXACT SPEED MEASURE AT ZERO

Here we prove the convergence (60), establishing the exact value of
the mass at zero of the limiting speed measure. Using (23), we have

∫ lν

0
m(r ′; lν , lκ ) χ(r ′)dr′ =

∫ lν

0

χ(r′)
f1(r′; lν, lκ )

exp
(

−
∫ r0

r′
f2(r′′; lν, lκ )
f1(r′′; lν, lκ )

dr′′
)

dr′ .

The integral in the exponential may be split into four terms:

∫ r0

r ′

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′ =

∫ lκ

r′

f2(r′′; lν, lκ)
f1(r′′; lν, lκ)

dr′′

+
∫ √

lκ lν

lκ

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′ +

∫ lν

√
lκ lν

f2(r′′; lν, lκ)
f1(r′′; lν, lκ)

dr′′ +
∫ r0

lν

f2(r′′; lν, lκ)
f1(r′′; lν, lκ)

dr′′ .

We begin by calculating the last three terms as they do not depend on r ′.
The last one gives

∫ r0

lν

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′

=aξ ln
r0

lν
+
∫ r0

lν

1

ρξ−3
[
f

♥
2 (ρ)−aξf♥

1 (ρ)
]
+2 d−1−aξ

ρ

(
lκ
lν

)2

ρξf
♦
1 (ρ)+2

(
lκ
lν

)2
dρ
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and we know from (83) that the integrand on the right is dominated by
Cρ−(1+ξ) (as soon as lν < 1), so we may use the Dominated Convergence
Theorem to conclude that

lim
lν ,

lκ
lν

→0

(∫ r0

lν

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′ −aξ ln

r0

lν

)
=
∫ ∞

1

f
♥
2 (ρ)−aξf♥

1 (ρ)

ρ3f
♦
1 (ρ)

dρ .

As for the other two,

∫ √
lκ lν

lκ

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′

= a2 ln

√
lν

lκ
+
∫ √

lν/ lκ

1

(
lκ
lν

)2
ρ3
[
f

♠
2 (

lκ
lν
ρ)−a2f

♠
1 (

lκ
lν
ρ)
]
+2 d−1−a2

ρ

C̃0ρ
2f

♣
1 (

lκ
lν
ρ)+2

dρ

with the integrand on the right dominated by C[( lκ
lν
)2ρ+ρ−3]<2Cρ−3, see

(84), so we may conclude that

lim
lν ,

lκ
lν

→0


∫ √

lκ lν

lκ

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′ −a2 ln

√
lν
lκ




=
∫ ∞

1

2(d−1−a2)

ρ (C̃0ρ
2 +2)

dρ = d −1−a2

2
ln

C̃0 +2

C̃0
.

Similarly,

∫ lν

√
lκ lν

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′

= a2 ln

√
lν

lκ
+
∫ 1

√
lκ / lν

ρ3
[
f

♠
2 (ρ)−a2f

♠
1 (ρ)

]
+2 d−1−a2

ρ

(
lκ
lν

)2

C̃0ρ
2f

♣
1 (ρ)+2

(
lκ
lν

)2
dρ

where the integrand on the right is bounded by C[ρ+ ( lκ
lν
)2ρ−3]<2Cρ, see

(84). Hence

lim
lν ,

lκ
lν

→0


∫ lν

√
lκ lν

f2(r
′′; lν , lκ )

f1(r ′′; lν , lκ ) dr′′ −a2 ln

√
lν
lκ


=

∫ 1

0

ρ
[
f

♠
2 (ρ)−a2f

♠
1 (ρ)

]
C̃0f

♣
1 (ρ)

dρ .
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What remains to be evaluated is

∫ lν

0

χ(r ′)
f1(r

′; lν, lκ ) exp
(

−
∫ lκ

r ′

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′

)
dr′

= 1

l
ξ−2
ν lκ

∫ lν/ lκ

0

χ(lκρ)

C̃0ρ
2f

♣
1 (

lκ
lν
ρ)+2

· exp

[
−
∫ 1

ρ

C̃0a2ρ
′f♣

2 (
lκ
lν
ρ′)+2 d−1

ρ′

C̃0ρ
′2f♣

1 (
lκ
lν
ρ′)+2

dρ′
]

dρ .

Let us show that the Dominated Convergence Theorem applies once more.
The following estimates are sufficient. For 0<ρ<1,

∣∣∣∣∣ χ(lκρ)

C̃0ρ
2f

♣
1 (

lκ
lν
ρ)+1

∣∣∣∣∣<χ(0) ,
∣∣∣∣∣
C̃0a2ρf

♣
2 (

lκ
lν
ρ)+ d−1

ρ

C̃0ρ
2f

♣
1 (

lκ
lν
ρ)+1

− d−1
ρ

∣∣∣∣∣< Cρ .

The first inequality is a consequence of χ(r)<χ(0) for any r > 0, and of
the positivity of f♣

1 . The second one is obtained by rewriting (85) using
(56) and (57). For 1<ρ<lν/ lκ , we use∣∣∣∣∣ χ(lκρ)

C̃0ρ
2f

♣
1 (

lκ
lν
ρ)+1

∣∣∣∣∣ < χ(0)
C̃0
B
ρ2∣∣∣∣∣

C̃0a2ρf
♣
2 (

lκ
lν
ρ)+ d−1

ρ

C̃0ρ
2f

♣
1 (

lκ
lν
ρ)+1

− a2

ρ

∣∣∣∣∣ < C

[(
lκ

lν

)2

ρ+ 1
ρ3

]
.

Here, the first inequality follows from (77) and the second one is obtained
by rewriting (84) with the use of (56) and (57). We then have

lim
lν ,

lκ
lν

→0
lξ−2
ν lκ

∫ lν

0

χ(r ′)
f1(r

′; lν, lκ ) exp
(

−
∫ lκ

r ′

f2(r
′′; lν, lκ )

f1(r
′′; lν, lκ ) dr′′

)
dr′

=
∫ ∞

0

χ(0)

C̃0ρ
2 +2

exp

[
−
∫ 1

ρ

C̃0a2ρ
′ +2 d−1

ρ′

C̃0ρ
′2 +1

dρ′
]

dρ

= 2
a2−3

2 (C̃0 +2)
d−1−a2

2 C̃
− d

2
0 B(

d

2
,

1−a2
2
) χ(0)

where B(x, y) is the Euler Beta function. Gathering all terms, in particular
the powers of lν and lκ that combine to l

(aξ+1−ξ)+(1−a2)
ν l

a2−1
κ , we obtain

the result (60) with Y given by (61).
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1. D. Bernard, K. Gawȩdzki, and A. Kupiainen, Slow modes in passive advection, J. Stat.
Phys. 90:519–569 (1998).

2. A. Borodin and P. Salminen, Handbook of Brownian Motion: Facts and Formulae,
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